
Best Practices: 

Informix Query Performance 

Tuning Basics 

Mike Walker 

Advanced DataTools 

mike@advancedatatools.com 

 



Mike Walker 

2 

Mike Walker has been using Informix databases 

for over 20 years, as a developer and as a 

database administrator. 

 

Mike heads up the Remote DBA Support for 

Advanced DataTools Corporation. 

 

Contact Info: 

mike@advancedatatools.com 

www.advancedatatools.com 

Office: 703-256-0267 

Cell: 303-909-4265 

 



Webcast Guidelines 

• The Webcast is being recorded.  The 

Webcast replay and slides may be 

available in a few days. 

• Please Mute your Line. Background 

sounds will distract everyone. 

• Use the Chat Button in the upper right 

to ask questions. 

 

3 



Performance Tuning Basics 

• Identifying long running queries 

• Explain plans – Query Tuning 

• Optimizer directives 

• Monitoring the buffer pool usage 

• Finding busy tables 

• Checking statistics 

 

4 



Long Running Queries – 

What’s Running? 
• How to tell if a session is doing anything 

• Start with “onstat -u” 

• First position in the Flags column indicates 
what’s going on 

B - Waiting for a buffer 

C - Waiting for a checkpoint 

G - Waiting for a write of the logical-log buffer 

L - Waiting for a lock 

S - Waiting for mutex 

T - Waiting for a transaction 

Y - Waiting for condition 

X - Waiting for a transaction cleanup (rollback) 

5 

Interested in anything that is NOT a “Y” – and last position is a “-” 



Long Running Queries – 

What’s Running? 

    onstat -u 
 

 

 

Userthreads 

address          flags   sessid   user     tty      wait             tout locks nreads   nwrites 

70000174751a028  ---P--D 1        informix -        0                0    0     47702    3024353 

70000174751a850  ---P--F 0        informix -        0                0    0     0        5744623 

70000174751b078  ---P--F 0        informix -        0                0    0     0        2744394 

. 

. 

70000174a2615c8  Y--P--- 240522   admin    DX-ALCV  7000018cc1dc7c0  0    3     149935   0 

70000174a261df0  ---PR-- 1555094  webuser  -        0                0    3     4989784  512 

70000174a262e40  Y--P--- 1565579  webuser  -        700001855e069b8  0    2     0        0 

700001753360ca8  Y--P--- 1567350  webuser  -        70000185997dd18  0    0     3905     0 

7000017533614d0  --BPX-- 1567353  webuser  -        0                0    5     38       128 

7000017533645c0  Y--P--- 1562970  webuser  -        700001856de09b8  0    3     13332    192 

700001753365e38  Y--P--- 869782   bob      PROD-SRV 700001762fb5628  0    1     0        0 

700001753366660  ---PR-- 1543869  webuser  -        0                0    3     11186388 834 

700001753366e88  Y--P--- 1496985  webuser  -        700001787828898  0    3     39872    0 

. 

. 

6 



Long Running Queries – 

How Long? 

• Use “onstat -g ntt” to find out when the 

connection was established and when the last 

SQL was submitted 
   

          netscb thread name    sid     open     read    write 

 700000703247b10 sqlexec      951571 12:14:08 13:51:19 13:51:19 

 700000733af0960 sqlexec      951553 12:03:16 13:51:16 13:51:16 

 700000702ec3458 sqlexec      951546 12:03:16 13:51:16 13:51:16 

 7000007030e7cd0 sqlexec      951521 11:59:18 13:52:05 13:52:05 

 70000070284e600 sqlexec      951510 11:57:23 13:52:05 13:52:05 

 

7 

Connection 
Established 

Time of last 
SQL 

Session ID 



Long Running Queries 

• Use onstat -u to tell you what is running 

• Use onstat -g ntt to tell you the last time 

SQL was submitted 

• Use the results of both to see what’s 

running and for how long 

– How long = difference between last SQL time 

and current time 

 

 

8 



Long Running Queries 
 

Combine the info from the onstats together, repeating at regular 
intervals: 
 

 

63867891    11:24:30 14:19:21 14:19:21 [14:19:24] <       3 142216977  423644 -        ---PR-- 

63957715    17:54:30 14:19:21 14:19:21 [14:19:24] <       3 29900439      256 -        ---PR-- 

64157342    04:49:23 14:19:22 14:19:22 [14:19:24] <       3 36750125       64 -        ---PR-- 

55507969    21:03:13 14:19:23 14:19:23 [14:19:24] <       3     2180    16192 -        ---PR-- 

.... 

63867891    11:24:30 14:19:21 14:19:21 [14:19:25] <       3 142302481  423644 -        ---PR-- 

63957715    17:54:30 14:19:21 14:19:21 [14:19:25] <       3 29912222      256 -        ---P--- 

64157342    04:49:23 14:19:22 14:19:22 [14:19:25] <       3 36842541       64 -        ---PR-- 

64158966    09:54:25 14:19:25 14:19:25 [14:19:25] <       3 28081252       64 -        ---P--- 

.... 

63867891    11:24:30 14:19:21 14:19:21 [14:19:27] <       3 142387729  423644 -        ---PR-- 

64157342    04:49:23 14:19:22 14:19:22 [14:19:27] <       3 36928045       64 -        ---PR-- 

.... 

63867891    11:24:30 14:19:21 14:19:21 [14:19:28] <       3 142472977  423644 -        ---PR-- 

64157342    04:49:23 14:19:22 14:19:22 [14:19:28] <       3 37013549       64 -        ---PR-- 

55507969    21:03:13 14:19:26 14:19:26 [14:19:28] <       3     2180    16192 -        ---P--- 

 

 

9 



Long Running Queries 
For OLTP, would like to see the SQL time change every second or so 
 

 
 

59022843    16:37:54 16:37:54 16:37:54 [16:57:33] <       1  1093756        0 -        ---PR-- 

59024816    16:47:42 16:47:45 16:47:45 [16:57:33] <       2 50401217        0 -        ---PR-- 

58980487    13:54:36 16:57:32 16:57:32 [16:57:33] <       4  5801210   101632 -        ---PR-- 

58980607    13:54:49 16:57:32 16:57:32 [16:57:33] <       4  6394606   122688 -        ---PR-- 

59026950    16:57:33 16:57:33 16:57:33 [16:57:33] <       2      798       64 -        ---PR-- 

59021449    16:31:16 16:57:33 16:57:33 [16:57:33] <       2    34261      256 LT-USER1 ---P--- 

58891988    08:49:49 16:57:33 16:57:33 [16:57:33] <       3 409885058   10460 -        ---PR-- 

59026776    16:56:38 16:57:33 16:57:33 [16:57:33] <       4     5200     7360 -        ---P--- 

.... 

59022843    16:37:54 16:37:54 16:37:54 [16:57:34] <       1  1094017        0 -        ---PR-- 

59024816    16:47:42 16:47:45 16:47:45 [16:57:34] <       2 50425264        0 -        ---PR-- 

55507969    21:03:13 16:57:34 16:57:34 [16:57:34] <       3     1338     8320 -        ---PR-- 

58980487    13:54:36 16:57:34 16:57:34 [16:57:34] <       4  5801892   101632 -        ---PR-- 

58980607    13:54:49 16:57:34 16:57:34 [16:57:34] <       4  6394606   122688 -        ---PR-- 

59026776    16:56:38 16:57:35 16:57:35 [16:57:34] <       4     5502     7488 -        ---P--- 

.... 

59022843    16:37:54 16:37:54 16:37:54 [16:57:36] <       1  1094246        0 -        ---PR-- 

59024816    16:47:42 16:47:45 16:47:45 [16:57:36] <       2 50447952        0 -        ---PR-- 

55507969    21:03:13 16:57:35 16:57:35 [16:57:36] <       3     1338     8320 -        ---P--- 

59026776    16:56:38 16:57:36 16:57:36 [16:57:36] <       4     5548     7552 -        ---P--- 

58980487    13:54:36 16:57:36 16:57:36 [16:57:36] <       4  5802380   101632 -        ---P--- 

58980607    13:54:49 16:57:36 16:57:36 [16:57:36] <       4  6395033   122688 -        ---PR-- 
 

10 

SQL time is changing for most sessions approximately every second 

Sessions 59022843 and 59024816 have been running for 20 minutes and 10 minutes respectively 



Long Running Queries 

• For a session where SQL is being submitted 

regularly, view the SQL at regular intervals: 
onstat -g sql <SID> -r 1 

• If the SQL is changing, then will soon get a 

good idea of what is going on: 

– Lots of different statements? 

– Repeated statements? Maybe with different literal 

values? 

• If different statements are executed, but see 

one SQL repeated frequently, then this may 

be the first statement to begin investigating 

 

 

 

11 

Repeat every 1 second 



Long Running Queries 

• Use the same approach with a background 
process that periodically checks how long all 
SQLs have been running and dump session 
information to a file when exceeds a 
threshold 

 

 

• Also use Informix SQL Trace to record 
queries and then retrieve those that ran the 
longest 

• SQL Trace is covered extensively elsewhere 

 

 

 

12 



Reviewing Query Plans 

• Now we have found some slow SQL, find out 

what it’s actually doing by obtaining a Query 

Plan 

 

• Turn on Dynamic Explain to get plan for a 

session:   
 

onmode -Y <sid> <0|1|2> [filename] 

  0=off 

  1=plan + statistics on 

  2=only plan on 

 

 

 

13 



Dynamic Query Plans 
onmode -Y 10563 1 

 

onstat -g ses 

 

IBM Informix Dynamic Server Version 12.10.FC5AEE -- On-Line -- Up 1 days 12:01:36 -- 
2947104 Kbytes 

 

session                                      #RSAM    total      used       dynamic 

id       user     tty      pid      hostname threads  memory     memory     explain 

10657    informix -        0        -        0        16384      12480      off 

10653    informix -        0        -        0        16384      12480      off 

10563    informix 2        4243     apollo   1        73728      64480      on 

10028    informix -        0        apollo   1        335872     321728     off 

10011    informix -        0        apollo   1        241664     100072     off 

44       informix -        0        -        1        626688     472280     off 

43       informix -        0        -        1        626688     471576     off 

42       informix -        0        -        1        618496     494080     off 

41       informix -        0        -        1        102400     86784      off 

 

 

 

14 

Set Dynamic Explain for Session 10563 



Dynamic Query Plans 
Explain plan written to a file in the user’s home 
directory with the SID in the name: 
 

-rw-rw-rw- 1 informix informix     573 Apr  7 11:17 sqexplain.out.10563 

 

cat sqexplain.out.10563 

 

QUERY: (OPTIMIZATION TIMESTAMP: 04-07-2017 11:17:33) 

------ 

select * from snapshot 

 

Estimated Cost: 79971 

Estimated # of Rows Returned: 1199409 

 

  1) informix.snapshot: SEQUENTIAL SCAN 

 

 

Query statistics: 

----------------- 

 

  Table map : 

  ---------------------------- 

  Internal name     Table name 

  ---------------------------- 

  t1                snapshot 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t1     1203641    1199409   1203641    00:00.00   79971 

 

 
15 

Query & 
Query Plan 

Query 
Statistics 

Query Statistics shown because used: 
onmode –Y <sid> 1 



Dynamic Query Plans 

• Using “onmode -Y” will not produce 

anything until the next statement runs – so 

no good for getting the explain plan for a 

single, long running statement 

• Limited value if prepared SQL is being 

executed 
 

• For a closer look and to start tuning, 

capture the SQL to a file, and get the 

explain plan for that… 

16 



SET EXPLAIN 

• SET EXPLAIN ON / SET EXPLAIN OFF: 
 

SET EXPLAIN ON; 

SELECT * FROM x WHERE y = 10; 

SET EXPLAIN OFF; 

• By default, the query plan is written to the file: 
sqexplain.out 

• File is created in the current directory (UNIX) 

• If use client app, the file will be in home directory 
of the user that SQL was executed as 

• File will be appended to each time more SQL is 
executed  

17 



SET EXPLAIN 
slow1.sql: 

 

 

 

 

 

 

 

 

 

 
 

timex dbaccess –e stores_demo slow1.sql > slow1.out 2>&1 & 

 
-rw-rw-rw- 1 informix informix 2167 Apr  9 07:50 slow1.exp 

 

 18 

 

set explain file to "slow1.exp"; 

set explain on; 

 

output to /dev/null 

select c.customer_num, o.order_num 

from customer c, orders o 

where c.customer_num = o.customer_num 

  and c.company = "Play Ball!" 

order by 2; 



SET EXPLAIN 

19 

QUERY: (OPTIMIZATION TIMESTAMP: 04-09-2017 07:50:47) 

------ 

select c.customer_num, o.order_num 

from customer c, orders o 

where c.customer_num = o.customer_num 

  and c.company = "Play Ball!" 

order by 2 

 

Estimated Cost: 6 

Estimated # of Rows Returned: 2 

Temporary Files Required For: Order By 

 

  1) informix.c: SEQUENTIAL SCAN 

 

        Filters: informix.c.company = 'Play Ball!' 

 

  2) informix.o: INDEX PATH 

 

    (1) Index Name: informix. 102_4 

        Index Keys: customer_num   (Serial, fragments: ALL) 

        Lower Index Filter: informix.c.customer_num = informix.o.customer_num 

NESTED LOOP JOIN 

slow1.exp 



SET EXPLAIN 

20 

Query statistics: 

----------------- 

 

  Table map : 

  ---------------------------- 

  Internal name     Table name 

  ---------------------------- 

  t1                c 

  t2                o 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t1     1          3         28         00:00.00   4 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t2     4          23        4          00:00.00   0 

 

  type     rows_prod  est_rows  time       est_cost 

  ------------------------------------------------- 

  nljoin   4          3         00:00.00   6 

 

  type     rows_sort  est_rows  rows_cons  time       est_cost 

  ------------------------------------------------------------ 

  sort     4          3         4          00:00.00   0 

As long as query is allowed to 
complete, Query Statistics will be 

shown at the end of the plan 
[ EXPLAIN_STAT=1 in ONCONFIG ] 



SET EXPLAIN 

For long running SQL or for Insert, Update 

or Delete operations, use 

“AVOID_EXECUTE” to get the explain plan 

without running the SQL: 
 

slow2.sql: 

 

 

 

 

 

 

 

 

 

 

 

21 

 

set explain file to "slow2.exp"; 

set explain on avoid_execute; 

 

update orders 

set ship_instruct = null 

where customer_num = 104; 

 



SET EXPLAIN 

22 

dbaccess -e stores_demo slow2.sql 

 

Database selected. 

 

set explain file to "slow2.exp"; 

Explain set. 

 

set explain on avoid_execute; 

Explain set. 

 

update orders 

set ship_instruct = null 

where customer_num = 104; 

0 row(s) updated. 

 

Warning! avoid_execute has been set 

 

Database closed. 

If use AVOID_EXECUTE will 
NOT see the Query Statistics 

in the Explain Plan 



Anatomy of a Query Plan 

23 

Query SQL 

Cost/Rows Returned/Temp Files/Directives 

Table 1 : Name & Access Method 

Table 1 : Filters 

Table 1 : Index Info 

Table 2 : Name & Access Method 

Table 2 : Filters 

Table 2 : Index Info 

Table 1 & 2 : Join Method 

Subqueries 

Query Statistics (if enabled) 

Repeated 
for other 

tables 



Query Plans 

24 

QUERY: (OPTIMIZATION TIMESTAMP: 04-09-2017 07:50:47) 

------ 

select c.customer_num, o.order_num 

from customer c, orders o 

where c.customer_num = o.customer_num 

  and c.company = "Play Ball!" 

order by 2 

 

Estimated Cost: 6 

Estimated # of Rows Returned: 2 

Temporary Files Required For: Order By 

 

  1) informix.c: SEQUENTIAL SCAN 

 

        Filters: informix.c.company = 'Play Ball!' 

 

  2) informix.o: INDEX PATH 

 

    (1) Index Name: informix. 102_4 

        Index Keys: customer_num   (Serial, fragments: ALL) 

        Lower Index Filter: informix.c.customer_num = 

informix.o.customer_num 

NESTED LOOP JOIN 

Query SQL 

Cost/Rows Returned/Temp 
Files/Directives 

Table 1 : Name & Access Method 

Table 1 : Filters 

Table 2 :  Name & Access Method 

Table 2 : Index 
Info 

Table 1 & 2 : Join Method 



Query Plans 

25 

select c.cust_id, c.cust_name, o.order_id 

from customer c, order o 

where c.cust_id = o.cust_id 

and c.cust_type = 'PREF' 

and o.pay_type != 'CREDCARD' 

and o.ship_method = 'FEDEX' 

 

 

Estimated Cost: 51207 

Estimated # of Rows Returned: 9000 

 

  1) informix.c: SEQUENTIAL SCAN 

 

        Filters: informix.c.cust_type = 'PREF' 

 

  2) informix.o: INDEX PATH 

 

        Filters: (informix.o.ship_method = 'FEDEX' AND 

informix.o.pay_type != 'CREDCARD' ) 

 

    (1) Index Name: informix.order_ix2 

        Index Keys: cust_id   (Serial, fragments: ALL) 

        Lower Index Filter: informix.c.cust_id = informix.o.cust_id 

NESTED LOOP JOIN 

Estimate – if very wrong, then 
stats may be out-of-date 



Query Plans – Breaking it Down 

26 

 1) informix.c: SEQUENTIAL SCAN 

 

        Filters: informix.c.cust_type = 'PREF' 

 

  2) informix.o: INDEX PATH 

 

        Filters: (informix.o.ship_method = 'FEDEX' AND 

informix.o.pay_type != 'CREDCARD' ) 

 

    (1) Index Name: informix.order_ix2 

        Index Keys: cust_id   (Serial, fragments: ALL) 

        Lower Index Filter: informix.c.cust_id = informix.o.cust_id 

NESTED LOOP JOIN 

customer 

Read ALL Rows 

order 

Read rows for cust_id 

Reject those that don’t match 
filters 

cust_type = ‘PREF’ 



Query Plans – Breaking it Down 

27 

customer 

Read ALL Rows 

order 

Read rows for cust_id 

Reject those that don’t match filters 
cust_type = ‘PREF’ 

select count(*) 

from customer 

where cust_type = 'PREF'; 

 (count(*)) 
 

      25000 

6040 row(s) retrieved. Results of query…  

select count(*) 

from customer; 

 (count(*)) 
  

     100000 

select count(*) 

from customer c, order o 

where c.cust_id = o.cust_id 

and c.cust_type = 'PREF'; 

 (count(*)) 
 

     250000 



Query Plans 

 

28 

customer (all rows)   : 100000 rows 

customer.cust_type = ‘PREF’  :   25000 rows 

Joins to order table   : 250000 rows 

Rows returned from query  :     6040 rows 

Number of Rows Read 

vs 

Number of Rows Returned 
 

Lots of rows read…and then discarded! 

Try and make the number of rows read as close as possible 
to those that are needed 



Query Statistics 

Query statistics: 

----------------- 

 

  Table map : 

  ---------------------------- 

  Internal name     Table name 

  ---------------------------- 

  t1                c 

  t2                o 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t1     25000      10000     100000     00:00.41   15501 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t2     6040       90000     250000     00:14.76   4 

 

  type     rows_prod  est_rows  time       est_cost 

  ------------------------------------------------- 

  nljoin   6040       9000      00:15.24   51207 

29 

Rows Read 
Rows Needed 
(after filtering) 

Table Scan, 
but fast! 

This is where the 
time was spent 

Review the “Filters” 
Including the filter columns in the index will 

reduce the rows scanned and the rows discarded 



Query Statistics 

Query statistics: 

----------------- 

 

  Table map : 

  ---------------------------- 

  Internal name     Table name 

  ---------------------------- 

  t1                c 

  t2                o 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t1     25000      10000     100000     00:00.40   15501 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t2     6040       128571    6100       00:01.15   1 

 

  type     rows_prod  est_rows  time       est_cost 

  ------------------------------------------------- 

  nljoin   6040       12858     00:01.61   25312 

30 

Faster! 

New index includes ship_method 
create index order_ix3 on order(cust_id, ship_method) 

Rows Read is much closer to the 
Rows Needed – fewer rows 

discarded 



Sequential Scans 

• If a Query Plan contains a Sequential 

Scan, all rows of the table are read 

(before any filter is applied) 

• Don’t freak out! 

– If most of the rows read from the table are 

needed, then it may be okay 

– Consider that many indexed reads of data 

can be costly because of the read of the 

index, plus the read of the data page 

31 



Sequential Scans 

A Scan of all Data Pages may be faster than lots of 
Indexed Reads 

 

 

 

 

 

 

 

But it depends on how many rows are actually 
needed 

A scan of a large table can trash the cache 

32 

Index 

Page 
Data 

Page 
Index 

Page 
Data 

Page 
Index 

Page 
Data 

Page 
Index 

Page 
Data 

Page 
Index 

Page 
Data 

Page 
Index 

Page 
Data 

Page 

Sequential Scan Indexed Reads 

Data 

Page 
Data 

Page 
Data 

Page 
Data 

Page 
Data 

Page 
Data 

Page 
Data 

Page 
Data 

Page 



Sequential Scans 

 

33 

 1) informix.order: SEQUENTIAL SCAN 

 

        Filters: (informix.order.ship_method = 'FEDEX' AND 

informix.order.pay_type = 'CREDCARD' ) 

 

 type     table  rows_prod  est_rows  rows_scan  time       est_cost 

 ------------------------------------------------------------------- 

 scan     t1     1000000    71429     1000000    00:04.55   280001 

 1) informix.order: INDEX PATH 

 

        Filters: informix.order.ship_method = 'FEDEX' 

 

    (1) Index Name: informix.order_ix4 

        Index Keys: pay_type order_id   (Serial, fragments: ALL) 

        Lower Index Filter: informix.order.pay_type = 'CREDCARD‘ 

 

 type     table  rows_prod  est_rows  rows_scan  time       est_cost 

 ------------------------------------------------------------------- 

 scan     t1     12200      71429     500000     00:06.16   2304336 

Rows Read 

Fewer Rows Slower! 



Query Tuning Example 

34 

SELECT inventory.week_nr, <snip>, inventory.quantity 

FROM product, inventory 

WHERE inventory.prod_num = product.prod_num 

  AND inventory.year_num = 2016 

  AND inventory.quantity > 0 

  AND TRIM(product.department || '-' || product.prod_type) IN ('A-1') 

  AND inventory.store IN (201) 

 

Estimated Cost: 6828412 

Estimated # of Rows Returned: 2349350 

 

  1) informix.product: SEQUENTIAL SCAN 

 

        Filters: TRIM ( BOTH ' ' FROM ((informix.product.department || '-' )|| 

informix.product.prod_type )) = 'A-1' 

 

  2) informix.inventory: INDEX PATH 

 

        Filters: informix.inventory.quantity > 0 

 

    (1) Index Name: informix.inventory_idx3 

        Index Keys: prod_num store week_nr year_num   (Key-First)  (Serial, 

fragments: ALL) 

        Lower Index Filter: (informix.inventory.prod_num = 

informix.product.prod_num AND informix.inventory.store = prod_type ) 

        Index Key Filters:  (informix.inventory.year_num = 2016 ) 

NESTED LOOP JOIN 



Query Tuning Example 

35 

Query statistics: 

----------------- 

 

  Table map : 

  ---------------------------- 

  Internal name     Table name 

  ---------------------------- 

  t1                product 

  t2                inventory 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t1     737        67311     673240     00:01.61   49460 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t2     242321     23493496  977563     02:26.49   101 

 

  type     rows_prod  est_rows  time       est_cost 

  ------------------------------------------------- 

  nljoin   242321     2349350   02:28.19   6828412 

Despite the ugly scan 
of the product table, 
it doesn’t take long 

Time is spent reading 
inventory 

75% of the rows read 
are discarded 



 2) informix.inventory: INDEX PATH 

 

        Filters: informix.inventory.quantity > 0 

 

    (1) Index Name: informix.inventory_idx3 

        Index Keys: prod_num store week_nr year_num   (Key-First)  
(Serial, fragments: ALL) 

        Lower Index Filter: (informix.inventory.prod_num = 

informix.product.prod_num AND informix.inventory.store = 201 ) 

        Index Key Filters:  (informix.inventory.year_num = 2016 ) 

NESTED LOOP JOIN 

Query Tuning Example 

• prod_num is supplied from table 1 (good) 
• store has a literal value (good) 
• year_num has a literal value (good), BUT it’s position in the index is 

after another column (week_nr), so it is used as a filter, but not for 
drilling into the index (Key-First).  Index pages will be read and 
discarded (bad) 

• quantity is not in the index.  A jump to the data page is needed to 
read the value to apply the filter.  Rows will be read and discarded 
(bad) 

 

 
36 



Query Tuning Example 

• New Index: 
inventory( prod_num, store, year_num, quantity, week_nr) 

• year_num can now be used for drilling down in 
the index 

• quantity is now in the index.  Query uses a “>” 
operator, but can be used for scanning the 
index leaf nodes, PLUS there is no need to 
check the data page 

• week_nr is not needed to filter records, but is 
used in the select clause.  Now no need to go to 
the data page at all! 

37 



Query Tuning Example – Key-Only 

Key-Only 

With a Key-only read, all the columns needed to satisfy 
the query are in the index.  There is no need to read the 
data page 

Index must also include columns used by the select 
clause and order by to get a key-only 

Key-only reads are very fast! 

38 

. 

. 

2) informix.inventory: INDEX PATH 

 

    (1) Index Name: informix.inventory_idx5 

        Index Keys: prod_num store year_num quantity week_nr   (Key-Only)  

(Serial, fragments: ALL) 

        Lower Index Filter: (((informix.inventory.prod_num = 

informix.product.prod_num AND informix.inventory.store = 201 ) AND 

informix.inventory.year_num = 2016 ) AND informix.inventory.quantity > 0 ) 

. 

. 

No filter anymore 



Query Tuning Example – Key-Only 

39 

Query statistics: 

----------------- 

 

  Table map : 

  ---------------------------- 

  Internal name     Table name 

  ---------------------------- 

  t1                product 

  t2                inventory 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t1     737        67311     673240     00:01.66   49460 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t2     242321     23496424  242321     00:00.82   2 

 

  type     rows_prod  est_rows  time       est_cost 

  ------------------------------------------------- 

  nljoin   242321     2349643   00:02.54   199938 
Previously 2m 26s 

All rows read are 
rows that are needed 

With the new index, the query 
execution dropped from 2.5 

minutes to 2.5 seconds 



Correlated Sub-Queries 

select c.* 
from customer c 
where exists ( 
  select “X” 
  from order o 
  where o.custid = c.custid 
     and o.stat = “OPEN” ) 

Correlated 

Outer query referenced in Inner 
query… 
Inner query must be repeated for each 
row returned by the outer query 

Non-Correlated 

select unique c.* 
from customer c, 
        order o 
where c.custid = o.custid 
  and o.stat = “OPEN” 
 
select c.* 
from customer c 
where custid in ( 
  select custid 
  from order o 
  where o.stat = “OPEN” ) 
 



Correlated Sub-Queries 

41 

... AND NOT EXISTS 

(SELECT C.cust_key FROM customer C  

 WHERE C.flag_1 = 0 AND C.flag_2 = 0  

   AND C.cust_key = ST.cust_key)  

 1) informix.st: INDEX PATH 

 

        Filters: (informix.st.cust_status IN ('F' , 'Q' , 'H') 

AND NOT EXISTS <subquery> ) 

 

    (1) Index Name: informix.site_x02 

        Index Keys: ssn site   (Key-First)  (Serial, fragments: ALL) 

        Lower Index Filter: informix.st.ssn > 'A' 

        Index Key Filters:  (informix.st.site = 210 ) 

 

<snip> 

 

    Subquery: 

    --------- 

    Estimated Cost: 9236 

    Estimated # of Rows Returned: 33 

 

      1) informix.sm: SEQUENTIAL SCAN 

 

            Filters: ((informix.c.cust_key = informix.st.cust_key AND 

informix.c.flag_2 = 0 ) AND informix.c.flag_1 = 0 ) 

Join between C and ST table makes 
this a Correlated Subquery 

Subquery executed for every row meeting criteria 

Scan of table 
executed repeatedly 



Correlated Sub-Queries 

42 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t1     1          85        3265281    04:05.61   816703 

 

. 

. 

. 

 

Subquery statistics: 

-------------------- 

 

  Table map : 

  ---------------------------- 

  Internal name     Table name 

  ---------------------------- 

  t1                c 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t1     8186       33        270015447  04:04.08   9236 

 

Cumulative 
values 



Correlated Sub-Queries 

No longer a Correlated Subquery 

Subquery will execute one time only 

43 

... AND NOT EXISTS 

(SELECT C.cust_key FROM customer C  

 WHERE C.flag_1 = 0 AND C.flag_2 = 0  

   AND C.cust_key = ST.cust_key)  

AND ST.cust_key NOT IN 

(SELECT C.cust_key FROM customer C    

 WHERE C.flag_1 = 0 AND C.flag_2 = 0) 

Change EXISTS to a NOT IN and 
remove the join 



Correlated Sub-Queries 

44 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t1     2          171       3265356    00:01.79   36899 

 

. 

. 

. 

 

Subquery statistics: 

-------------------- 

 

  Table map : 

  ---------------------------- 

  Internal name     Table name 

  ---------------------------- 

  t1                c 

 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost 

  ------------------------------------------------------------------- 

  scan     t1     8193       330       32981      00:00.04   9236 

Fraction of records 
read & much faster! 

With the change, the query 
execution dropped from 4m 5s to 

less than 2 seconds 



Correlated Sub-Queries 

• Sometimes a CSQ can be a good thing 

• Adding a join to a subquery can reduce 

the data set returned 

• Efficiencies made to a subquery will be 

compounded when executed repeatedly 

45 



Optimizer Directives 

• Change the generated query plan by 
removing paths from consideration 

– Will not be ignored (as long as they are valid) 

– Negative directives (Don’t do something) 

• Great tool for tuning queries 

46 



Optimizer Directives: Syntax 

Include the directive as a comment in the 

SQL, followed by a “+”: 

 

SELECT --+ directive text 

SELECT {+ directive text } 

SELECT /*+ directive text*/ 

47 



Optimizer Directives – 4GL 

Can be used in 4GL, but must PREPARE the 
SQL with the Directives so that it is submitted to 
the database 
 

  

let sql_string = 

  'select {+ USE_HASH(o) } c.state, max(order_date) ', 

  'from order o, cust c ', 

  'where o.cust_id = c.cust_id ', 

  'group by 1 ', 

  'order by 1' 

 

 prepare sql_do_unl from sql_string 

 declare curs_do_unl cursor for sql_do_unl 

48 



Types of Directives 

• Access Methods 

• Join Order 

• Join Methods 

• Star Join 

• Optimization Goal 

• Explain Plan 

• Statement Cache 

49 

Not all directives are 
available in all engine 

versions 
The following are for 12.10 



Types of Directives: Access Methods 

50 

FULL Performs a full-table scan  

INDEX Uses the index specified to access the table 

INDEX_ALL or 
MULTI_INDEX 

Access the table using the specified indexes 
(Multi-index scan) 

INDEX_SJ Use the specified index to scan the table in an 
index self-join path. 

AVOID_FULL No full-table scan on the listed table  

AVOID_INDEX Does not use any of the specified indexes  

AVOID_INDEX_SJ Does not use an index self-join path for the 
specified indexes 

AVOID_MULTI_INDEX Does not use a multi-index scan path for the 
specified table 



Types of Directives: Join Order 

ORDERED Join tables or views in the order in 
which they are referenced in the FROM 
clause of the query 

51 



Types of Directives: Join Methods 

USE_NL Forces nested loop join on specified 
 tables 

USE_HASH Forces hash join on specified tables 

AVOID_NL Avoids nested loop join on specified 
 tables 

AVOID_HASH Avoids hash join on specified tables 

52 



Types of Directives: Star Join 

AVOID_FACT At least one table must be specified. Do 
not use the table (or any table in the list of 
tables) as a fact table in star-join 
optimization.  

AVOID_STAR_JOIN The optimizer does not consider a star-join 
execution plan. 

FACT Exactly one table must be specified. Only 
consider the specified table as a fact table 
in the star-join execution plan.  

STAR_JOIN Favor a star-join plan, if one is possible. 

53 



Types of Directives: Optimization Goal 

FIRST_ROWS (N) Tells the optimizer to choose a 
plan optimized to return the first 
N rows of the result set 
 

ALL_ROWS Tells the optimizer to choose a 
plan optimized to return all of the 
results 

54 

“Query level” equivalent of: 
• OPT_GOAL configuration parameter (instance level)   

• 0=First Rows, -1=All Rows (default) 

• OPT_GOAL environment variable (environment level) 

• SET OPTIMIZATION statement (session level) 

• FIRST_ROWS, ALL_ROWS 



Types of Directives: Explain Plan 

55 

EXPLAIN Turns SET EXPLAIN ON for the 
specified query 
 

EXPLAIN AVOID_EXECUTE 

 Prevents the data manipulation 
statement from executing; instead, 
the query plan is printed to the 
explain output file 



Types of Directives: Statement Cache 

AVOID_STMT_CACHE 

 Prevent the statement from being stored 
in the statement cache.  Forces the 
optimizer to reoptimize the statement 
every time that the statement is run. 

56 



Directives Examples: ORDERED 
select /*+ ORDERED */ 

customer.lname, orders.order_num, items.total_price 

from customer, orders, items 

where customer.customer_num = orders.customer_num 

  and orders.order_num = items.order_num 

  and items.stock_num = 6 and items.manu_code = "SMT" 

 

DIRECTIVES FOLLOWED: 

ORDERED 

DIRECTIVES NOT FOLLOWED: 

 

Estimated Cost: 15 

Estimated # of Rows Returned: 1 

 

  1) informix.customer: SEQUENTIAL SCAN 

 

  2) informix.orders: INDEX PATH 

 

    (1) Index Name: informix. 102_4 

        Index Keys: customer_num   (Serial, fragments: ALL) 

        Lower Index Filter: informix.customer.customer_num = informix.orders.customer_num 

NESTED LOOP JOIN 

 

  3) informix.items: INDEX PATH 

 

    (1) Index Name: informix. 105_12 

        Index Keys: stock_num manu_code   (Serial, fragments: ALL) 

        Lower Index Filter: (informix.items.manu_code = 'SMT' AND informix.items.stock_num = 6 ) 

 

DYNAMIC HASH JOIN 

    Dynamic Hash Filters: informix.orders.order_num = informix.items.order_num 

57 

Tables are accessed in the 
same order they are listed 

in the FROM clause 



Directives Examples : Combine 

Directives 

select /*+ ordered index(customer, zip_ix) 
avoid_index(orders," 102_4") */ 

c.lname, o.order_num, i.total_price 
from customer c, orders o, items i 
where c.customer_num = o.customer_num 
  and o.order_num = i.order_num 
  and stock_num = 6 
  and manu_code = "SMT" 
 
 

58 



Directives Examples : Errors 

Check the Explain Plan to make sure that the 
directives were followed as expected: 
 

 . 

 . 

 DIRECTIVES FOLLOWED: 

 ORDERED 

 INDEX ( customer zip_ix ) 

 DIRECTIVES NOT FOLLOWED: 

 AVOID_INDEX ( orders  101_4 ) Invalid Index Name Specified. 

 . 

 . 

 

The query will still be executed even with invalid directives 
 

59 



Optimizer Directives: Pros & Cons 
Pros: 
 

• Forces the engine to execute the SQL the way that 

we want 

• Sometimes we know better!! 

• Great for testing different plans.  What if..? 
 
Cons: 
 

• Forces the engine to execute the SQL the way that 

we want 

• Sometimes the engine knows better!! 

• If new indexes are added, number of rows changes 

significantly, or data distributions change…then a 

better execution plan may be available 
60 



Bufferpool Usage 

• Obvious performance benefit when 

queries are satisfied from the cache 

instead of disk 

• Monitoring the bufferpool can give insight 

into proper sizing and direct you to 

problem tables, problem queries and 

missing indexes 

 

 

 

 

 

 

 

61 



Bufferpool Turnover 

• Measure the turnover of pages in the 

bufferpool 

– Art Kagel’s calculation of Buffer Turnover 

Buffer Turnover Ratio = ((bufwrits + pagreads) / 

number of buffers ) / time_since_profile_reset 

– Aim for below 10 - Lower is better 

– See ratios script on IIUG site for this and other 

performance ratios 

 

 

 

 

 

 

 

62 



Bufferpool Turnover 

BTR Calculation: 
 

select  bufsize,nbuffs, 

        round(((( pagreads + bufwrites ) 

/nbuffs ) / (  

   select (ROUND ((( 

   sh_curtime - sh_pfclrtime)/60)/60) ) 

   from sysshmvals ) ),1) BTR 

from sysbufpool; 

 

 

 

 

 

 

 

 

63 



Bufferpool Turnover 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64 

     

    bufsize      nbuffs              btr 

 

       2048      250000              4.9 

       4096       50000            820.6 

      16384       10000              0.9 

 
Way too 

high! 



Bufferpool Turnover 

Useful to measure BTR over time to identify 

peak periods or look for changes 

 

 

 

 

 

 

 

 
65 



Bufferpool Turnover 
Measure the turnover hourly using the delta of values to 

see when periods of higher turnover happen 

 

 

 

 

 

 

 

 

66 

The above showed that the bufferpool turnover spikes in 
the early morning hours during report generation 



Bufferpool Use 

• Find out what objects are using the 

bufferpool 

• Look for tables/indexes that dominate the 

bufferpool 

• Watch over time to see what swaps in/out 

• Identify the troublemakers 

 

 

 

 

 

 

 

 

 

 

67 

Don’t assume that increasing the size 
of the bufferpool is the answer 



onstat -P : Print partition buffer 

summary 
 

Buffer pool page size: 2048 

partnum  total    btree    data     other    dirty 

0        28       0        12       16       11 

1048577  600      0        586      14       6 

1048578  3        1        1        1        0 

1048579  1        0        0        1        0 

. 

. 

. 

 

51380228 2        0        1        1        0 

51380229 7        0        6        1        0 

 

Totals:  28674    915      3280     24479    83 

 

Percentages: 

Data  11.44 

Btree 3.19 

Other 85.37 
 

 

 
 

 

 

 

 

 

68 

Table/Idx 

Section for each pool 

How many pages of this 
table/index is in the buffer pool 

Total pages used 
in this buffer pool 



Bufferpool Use 

Once have identified the tables that frequently 
consume a large part of the cache, or appear 
and disappear from the top-10, then can start 
tuning: 

– Size the bufferpool to accommodate the 
commonly used tables to keep them in the cache 

– Can tables be isolated to a different bufferpool? 

– For tables that frequently trash the cache, identify 
queries that may be performing scans of the table 

– Look at table level counters to get a better picture 
of what is happening 

 

 

 

 

 

 

 

 

 

 

 

69 



Table Counters 

• Get information at a table fragment/index 
level 

• sysmaster:sysptprof 
(view between systabnames & sysptntab) 

• Useful way to identify tables that may be 
performance bottlenecks 

• Reset counters with onstat -z or restart 
instance 

• Need TBLSPACE_STATS 1 set in 
ONCONFIG 

 

 

 

 

 

 

 

 

 

 

 

 

70 



Table Counters - sysmaster:sysptprof 

 
dbsname     adtc_monitor 

tabname     snapshot 

partnum     9437506 

lockreqs    197049665 

lockwts     0 

deadlks     0 

lktouts     0 

isreads     180714794 

iswrites    9271 

isrewrites  4087 

isdeletes   17 

bufreads    268432796 

bufwrites   8661 

seqscans    11459 

pagreads    1273469 

pagwrites   709 
 

 

 

 

 
 

 

 

 

 

 

71 

Identification 

Locks 

I/O 



Table Counters – sysptprof – I/O 

• Sort the results by pagreads/pagwrites to find 

those tables which result in high disk i/o 
 

– Use dbinfo(“DBSPACE”, partnum) to get the 

dbspace.  Useful for fragmented tables. 
 

select dbsname, 

       tabname, 

       bufreads, 

       bufwrites, 

       pagreads, 

       pagwrites, 

       dbinfo("DBSPACE", partnum) dbspace 

from sysptprof 

order by (pagreads+pagwrites) desc; 

 

 

 

 

 

 

 

 

 

 

 

 

72 



Table Counters – Sequential Scans 

seqscans number of scans performed against 

this table 

– Sorting by the number of scans alone will also 

include those small tables for which a scan is 

more efficient 

– Combine with the size of the table to identify 

scans of large tables.  Divide by the length of 

time since the counters were reset to get KB 

scanned/hour 

• Use systabinfo to get the size of a table - does not 

rely on update statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

73 



Sequential Scans - History 

As with other metrics, keeping a history can 
help diagnose problems and determine if 
something is still a problem 

 
date                   rows            scans 

 

01/03/2015           210970              625 

01/04/2015           211192              625 

01/05/2015           211218              625 

01/06/2015           220488              918 

01/07/2015           230141             1110 

01/08/2015           239930             1438 

01/09/2015           249377            38353 

01/10/2015           258954           251260 

01/11/2015           259301           251261 

01/12/2015           259451           251261 

01/13/2015           269028           251512 

01/14/2015           278812           251682 

01/15/2015           287936           251939 

 
 

 

 

 

 
 

 

 

 

 

 

74 

Sudden jump, 
then very few 

scans 



Table Counters – sysptprof – I/O 

Use sysptprof to review counters for a specific 

table/index, while monitoring or capturing SQL to see 

values changing over time 
 

 

Table/Idx   isreads  iswrites   isrewrt  isdel   bufreads     bufwr  pagreads   pagwr    scan 

--------------------------------------------------------------------------------------------- 

contract     889739      1940       289    176 1218475899      1129    152563     964  869301 

... 

Table/Idx   isreads  iswrites   isrewrt  isdel   bufreads     bufwr  pagreads   pagwr    scan 

--------------------------------------------------------------------------------------------- 

contract     889741      1940       289    176 1218478853      1129    152563     964  869303 

... 

Table/Idx   isreads  iswrites   isrewrt  isdel   bufreads     bufwr  pagreads   pagwr    scan 

--------------------------------------------------------------------------------------------- 

contract     889743      1940       289    176 1218481807      1129    152563     964  869305 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75 

Read operations are increasing, reads are satisfied from 
buffers and are the result of table scans 



Update Statistics 

• The Database Optimizer uses statistics gathered on 
the tables, their columns and indexes to determine 
which is the best query plan to use 

• If the statistics don’t exist or are inaccurate, then 
Informix may choose a poor query plan 

• Make sure that statistics are rerun each time 
substantial changes are made to a table – including 
the number of rows and values in a column 

– This includes populating temp tables inside of 
applications 

76 



Update Statistics 

• The basic (and most important) statistic is 
the number of rows in a table 

– Update statistics LOW for the table to update 
this statistic (stored in systables.nrows) 
 

• Data Distributions denotes how unique or 
how common particular values are within a 
field 

– Update statistics MEDIUM performs a sampling 
of the records to determine distributions 

– Update statistics HIGH scans all records to 
determine distributions 

77 



How Fresh are your Stats? 

• Basic stat of how many rows in a table is 

stored in <database>:systables.nrows 

 

• The time that LOW stats were last updated 

is now recorded in the column ustlowts 

 

78 



How Fresh are your Stats? 
select 

   tabname[1,20], 

   ustlowts, 

   round(nrows) nrows 

from systables 

where tabtype = "T"; 
 

 

79 

tabname              ustlowts                             nrows 

 

systables            2017-04-09 01:12:08.00000               91 

syscolumns           2017-04-09 01:12:08.00000              629 

sysindices           2017-04-09 01:12:28.00000              130 

systabauth           2017-04-09 01:12:08.00000               91 

syscolauth           2017-04-09 01:12:09.00000               44 

sysviews             2017-04-09 01:12:09.00000                5 

sysusers             2017-04-09 01:12:26.00000                1 

sysdepend            2017-04-09 01:12:09.00000                2 

syssynonyms          2017-04-09 01:12:09.00000                0 

syssyntable          2017-04-09 01:12:09.00000                0 

 



How Accurate are your (LOW) Stats? 
Compare the estimated row counts in systables.nrows with the actual row counts  

 

select first 25 dbsname[1,12], tabname[1,20], est_nrows::int est, act_nrows::int 
act, 

   case 

      when est_nrows = 0 and act_nrows > 0 then 100::smallint 

      when est_nrows = act_nrows then 0 

      else round(abs(act_nrows - est_nrows)/est_nrows*100) 

   end diff 

from (( 

   select n.dbsname, t.tabname, round(t.nrows) est_nrows, sum(i.ti_nrows) 
act_nrows 

   from systables t, sysmaster:systabnames n, sysmaster:systabinfo i 

   where t.tabname = n.tabname 

     and n.dbsname = "<database name>" 

     and n.partnum = i.ti_partnum 

     and t.tabtype = "T" 

   group by 1,2,3)) 

order by diff desc, act desc; 

80 

dbsname      tabname                      est         act             diff 

 

stores_demo  sysattrtypes                   5          16              220 

stores_demo  sysxtddesc                     3           4               33 

stores_demo  sysxtdtypes                   24          25                4 

stores_demo  sysprocbody                 3763        3763                0 

If actual and estimates are 
significantly different, then 
update low stats (at least) 



How Fresh are your Stats? 
Checking the column distributions 
 

  select t.tabname[1,18], c.colname[1,18], 

   d.constr_time::datetime year to minute constructed, 

   d.mode, 

   d.resolution::decimal(5,2) res  , 

  d.confidence::decimal(5,2) conf 

  from sysdistrib d, systables t, syscolumns c 

  where d.tabid = t.tabid 

  and t.tabid = c.tabid 

  and d.colno = c.colno 

  and d.seqno = 1 

  order by t.tabid, c.colno; 

 

81 

tabname            colname            constructed      mode     res    conf 

 

items              item_num           2017-03-18 01:11 H       0.50    0.00 

items              order_num          2017-03-18 01:11 H       0.50    0.00 

items              stock_num          2017-03-18 01:11 H       0.50    0.00 

items              manu_code          2017-03-18 01:11 M       2.00    0.95 



Next Webcast  

Informix Best Practices  

 

• Schema Design Tips - by Art Kagel 

– Thursday, November 30, 2017 2:00pm EST 
 

• Getting Started with Informix Enterprise Replication – by Tom 

Beebe 

– Thursday, December 14, 2017 2:00pm EST 
 

 

Please register for each webcast here at: 

http://advancedatatools.com/Informix/NextWebcast.html 

82 

http://advancedatatools.com/Informix/NextWebcast.html


Informix Training 2018 

– Advanced Informix Performance Tuning 

• February 5-8, 2018 

– Informix for Database Administrators 

•  April 23-26, 2018 

 

• All courses can be taken online on the web from your desk or at 

our training center in Virginia. 

• We guarantee to NEVER cancel a course and will teach a 

course as long as one student is registered! 

• Please register early as the last two courses have filled up and 

we have not been able to accommodate everyone. 

http://advancedatatools.com/Training/InformixTraining.html 

83 

http://advancedatatools.com/Training/InformixTraining.html


Coming Soon… 

New Training Servers  

84 

Each Student in class will 

have a server running 

Informix with: 

- 8 Cores 

- 8 – 62 GB RAM 

- 1 SSD Disk 

- 1-4 more disks 



Questions? 

 

Send follow-up questions to 

mike@advancedatatools.com 

85 



86 

Informix Support and Training from the Informix Champions! 
 

Advanced DataTools is an Advanced Level IBM Informix Data Management Partner, and has been an authorized 

Informix partner since 1993. We have a long-term relationship with IBM, we have priority access to high-level support 

staff, technical information, and Beta programs. Our team has been working with Informix since its inception, and 

includes 8 Senior Informix Database Consultants, 4 IBM Champions, 2 IIUG Director’s Award winners, and an IBM 

Gold Consultant. We have Informix specialists Lester Knutsen and Art Kagel available to support your Informix 

performance tuning and monitoring requirements!  

 

• Informix Remote DBA Support Monitoring  

• Informix Performance Tuning 

• Informix Training 

• Informix Consulting  

• Informix Development  
 

Free Informix Performance Tuning Webcast replays at:  

http://advancedatatools.com/Informix/Webcasts.html 

Email: info@advancedatatools.com 

Web: http://www.advancedatatools.com 

 

http://advancedatatools.com/Informix/Webcasts.html
http://www.advancedatatools.com/


 

 

Thank You 

 

Mike Walker 
Advanced DataTools Corporation 

mike@advancedatatools.com 

 
For more information: 

http://www.advancedatatools.com 


