Optimizing the Operating System (Unix, Linux) for best Informix Database Performance by Lester Knutsen

Webcast on May 17 at 2:00pm EDT

Lester Knutsen

Lester Knutsen is President of Advanced DataTools Corporation, and has been building large data warehouse and business systems using Informix Database software since 1983. Lester focuses on large database performance tuning, training, and consulting. Lester is a member of the IBM Gold Consultant program and was presented with one of the Inaugural IBM Data Champion awards by IBM. Lester was one of the founders of the International Informix Users Group and the Washington Area Informix User Group.

> lester@advancedatatools.com www.advancedatatools.com 703-256-0267 x102

Webcast Guidelines

- The Webcast is being recorded. The Webcast replay and slides may be available in a few days.
- Please Mute your Line. Background sounds will distract everyone.
- Use the Chat Button in the upper right to ask questions.

Chat

Agenda

- Operating System Tuning for Informix
 Database Performance
- OS performance statistics that need to be monitored and collected
- Unix utilities, what to monitor, and scripts to collect data to tune your server
- Performance Metrics Goals

4

Note: The Examples include here may vary from your OS and version

Operating System Tuning for Informix Database Performance

Start with the Release Notes

- Located in \$INFORMIXDIR
 - release/en_us/0333/ids_machine_notes_12.10.txt
- Changes with every release and OS port of Informix

Release Notes

- OS Information
- System Requirements
- System Configuration
- Kernel Parameters
- Feature Notes
- Features not supported

Linux Kernel Shared Memory Calculations

SHMMAX is the maximum size of a single shared memory segment set in bytes.										
kernel.shmmax = 4398046511104										
	<u>Bytes</u>	<u>KB</u>	<u>MB</u>	<u>GB</u>						
Recommended	4,398,046,511,104	4,294,967,296	4,194,304	4,096						
Default 64Bit Kernel	68,719,476,736	67,108,864	65,536	64						
Default 32Bit Kernel	4,294,967,295	4,294,967,295 4,194,304 4,0 33,554,432 32,768								
Informix Release Notes	33,554,432	32,768	32	0						
SHMALL sets the total amount of shared memory pages that can be used system wide, in page										
kernel.shmall = 4194304	4194304	17179869184	16777216	16384						
SHMALL is the division of SHMMAX/PAGE_SIZE, e.g:. 1073741824/4096=262144.										
	<u>4KB Pages</u>	KB	<u>MB</u>	<u>GB</u>						
Recommended	1,073,741,824	4,294,967,296	4,194,304	4,096						
Default 64Bit Kernel	16,777,216	67,108,864	65,536	64						
Default 32Bit Kernel	1,048,576	4,194,304	4,096	4						
Informix Release Notes	4,194,304	16,777,216	16,384	16						

Linux Kernel Parameters

- SHMMAX: 4398046511104
- SHMMNI: 4096
- SHMALL: 4194304
- SEMMNI: 4096
- SEMMSL: 250
- SEMMNS: 32000
- SEMOPM: 32

Linux - /etc/sysctl.conf

- # kernel.shmmax = 2147483648
- kernel.shmmax = 4398046511104
- #The maximum number of shared memory segments.
- kernel.shmmni = 4096
- #The maximum amount of shared memory
- kernel.shmall = 4194304
- # semaphores: semmsl, semmns, semopm, semmni
- kernel.sem = 250 128000 100 128

Linux - /etc/sysctl.conf

- #How willing linux is to swap memory
- vm.swappiness = 1
- #Filesystem max files increase
- fs.file-max = 2000000
- #Number of active BYTES of allowable concurrent (AIO) requests. Note Informix will only take half of this for its processes, so double what you need. Also if you set AIOON it will only use that number rather then the aio-max-nr setting.
- fs.aio-max-nr = 2048576
- fs.mqueue.msg_max = 1024
- fs.mqueue.queues_max = 4096

Huge Pages

- Informix database server can use large pages in memory when queries
- require more memory
- Message in Online Log on Startup
 - Shared memory segment will use huge pages.

Setting Huge Pages in Linux

- Cat /proc/meminfo to see if HugePages are used
- Not Used
 - HugePages_Total: = 0
- HugePages Used

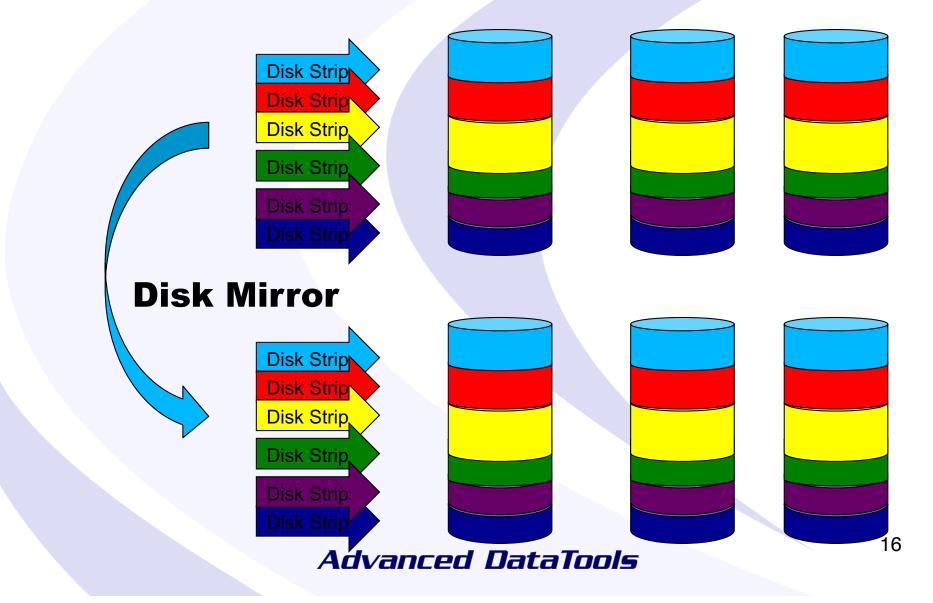
informix@tiger1:~	train1	>	cat	/proc/memi	info	grep	HugePages_	
HugePages_Total:	4096							
HugePages_Free:	2432							
HugePages_Rsvd:	0							
HugePages_Surp:	0							
<pre>informix@tiger1:~</pre>	train1	>						

Setting Huge Pages in Linux

- To Set HugePages
 - sysctl -w vm.nr_hugepages=<no. of huge pages>

Enable Huge Pages in the Linux Kernal

```
echo "Status of Huge Pages"
cat /proc/meminfo | grep HugePages_
```


```
echo -n "Enter number of Huge Pages to create: "
read ans
sysctl -w vm.nr_hugepages=$ans
```

echo "Status of Huge Pages" cat /proc/meminfo | grep HugePages_

Spread the Disk I/O

- More disks are better
- Spread the disk I/O across as many disks as possible
- RAID 10 Stripes and mirrors the data across many disks

RAID 10 Configuration

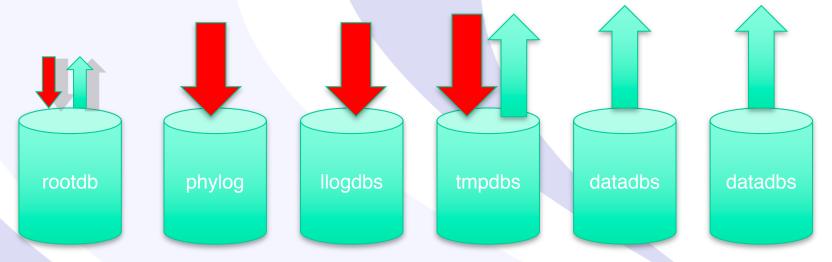
Spindle Magnetic Drives

Disk is organize into sectors. The disk arm moves to a spot to read a byte of data

Western Digital VelociRaptor 300 GB, Internal, 10000 RPM, 3.5" (WD3000BLFS) Hard Drive

Disk Layout - The *FASTEST* location of a traditional disk is where the disk arm has to move the least to read or write data – the center

Solid State Disk (SSD)


A solid-state drive (SSD) is a nonvolatile storage device that stores persistent data on solid-state flash memory. Solid-state drives actually aren't hard drives in the traditional sense of the term, as there are no moving parts involved

Disk is organize into cells. Each byte is directly addressable and readable.

Database Disk I/O

- Most Reads are from Data and Tables
- Writes will be split between Physical Log, Logical Log, Temp and Data

Linux Disk I/O Schedular

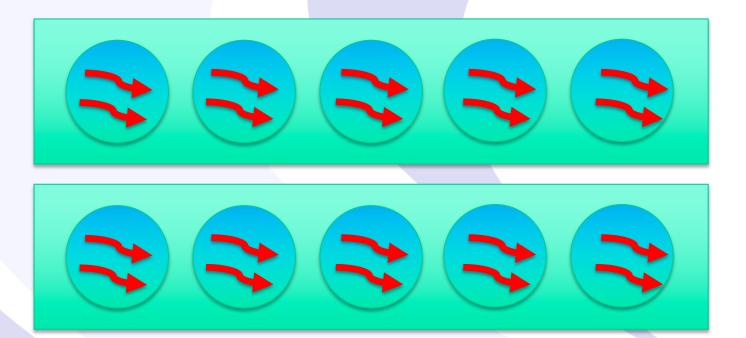
- noop recommended for setups with devices that do I/O scheduling themselves, such as intelligent storage or multipathing or databases
- deadline latency-oriented I/O scheduler
 - default for SSD Drives
- cfg Completely Fair Queuing
 - default for Spinning Drives

Linux Disk I/O Schedular

- To see the current scheduler
 - cat /sys/block/sda/queue/scheduler
- To Change the current scheduler
 - echo noop > /sys/block/sda/queue/scheduler

tiger1:~ # cat /sys/block/sda/queue/scheduler
[noop] deadline cfq
tiger1:~ #

Enable/Disable CPU Hyperthreading on Linux


- Best to be done in the BIOS
- To See CPU usage:
 - cat /proc/cpuinfo
 - Look for the CPUs that have the same "core id", you want to switch off the second of each pair

CPU Terms

- Socket = One Chip or Processor
- Cores per Socket = How many cores run on a chip. A core only runs one process at a time.
- Hyper-Threads or SMT threads per Core = Many Cores have the ability to run multiple threads. No matter how many threads run on a Core, only one thread can run at a time on a core. Hyper-Threads will appear as additional Virtual Cores.
- Chip speed is measured in gigahertz (GHz); this is the speed of a single core of your processor.
- PVU IBM Processor Value Unit = A unit of measure used to differentiate licensing of software

CPU Terms

- Example: 2 Sockets with 5 Cores and 2 Hyper-Threads per Core = 10 Cores and 20 Virtual Cores
- Can run 10 processes at the same time

Informix CPU Best Practices

- How many Cores will be allocated for Informix? What else is running on the machine?
- Traditional best practice is number of physical CPU Cores minus 1
- Current CPU Cores are fast enough to handle 2-3 oninits per Core or 1 oninit per 500-1000 MHz

Hyper-Threads or SMT Threads

- Hyper-Threads and SMT Threads may not be helpful to Informix oninit process
- Example:

Informix on AIX. Each AIX Core has 4 SMT threads, each displaying as a CPU; only the first thread is busy, the rest are idle. System configuration: lcpu=256 mode=Capped

сри	min	maj	mpc	int	cs	ics	rq	mig	lpa	sysc เ	JS S	sy v	waid pc
0	2457	Ø	0	447	173	9	ø	90	91	11091	9	34	0 57 0.34
1	0	0	0	54	0	0	0	0	-	0	0	0	0 100 0.22
2	0	0	0	54	0	0	0	0	-	0	0	0	0 100 0.22
3	0	0	0	61	0	0	0	0	100	0	0	3	0 97 0.22
4	843	0	0	665	670	66	0	539	90	10674	14	16	0 70 0.30
5	0	0	0	60	3	1	0	4	83	5	0	4	0 96 0.23
6	0	0	0	59	0	0	0	1	100	0	0	4	0 96 0.23
7	0	0	0	60	3	0	0	4	100	8	0	3	0 97 0.23
8	413	0	0	504	695	57	0	533	91	15554	16	20	0 64 0.32
9	0	0	0	60	15	1	0	14	96	36	0	5	0 95 0.23
10	0	0	0	95	28	2	0	4	100	145	1	2	0 97 0.23
11	0	0	0	59	0	0	0	0	100	0	0	4	0 96 0.23
12	466	0	0	494	648	38	0	451	91	12710	17	12	0 71 0.30
13	0	0	0	61	0	0	0	1	88	1	0	6	0 94 0.24
14	0	0	0	60	0	0	0	5	100	1	0	5	0 95 0.24
15	0	0	0	54	0	0	0	2	100	1	0	0	0 100 0.23

Hyper-Threads or SMT Threads Best Practices

- Test, Test and Test again; don't assume that more Hyper-Threads or SMT threads are better. Your workload will determine what is best.
- AIX Try 2 SMT threads per Core on Power6 and Power7, 4 SMT on Power8
- Intel Try 2 Oninits per Core instead of 2 Hyper-Threads and 1 Oninit per Hyper-Thread

Disable CPU Hyperthreading on Linux

Disable CPU 4-7 to turn off Hyperthreading echo 0 > /sys/devices/system/cpu/cpu4/online echo 0 > /sys/devices/system/cpu/cpu5/online echo 0 > /sys/devices/system/cpu/cpu6/online echo 0 > /sys/devices/system/cpu/cpu7/online

Enable CPU Hyperthreading on Linux

Disable CPU 4-7 to turn off Hyperthreading echo 1 > /sys/devices/system/cpu/cpu4/online echo 1 > /sys/devices/system/cpu/cpu5/online echo 1 > /sys/devices/system/cpu/cpu6/online echo 1 > /sys/devices/system/cpu/cpu7/online

OS performance statistics that need to be monitored and collected

Unix utilities, what to monitor, and scripts to collect data to tune your server

What to Monitor and Tune?

- CPU Usage How busy are the CPUs?
- Memory Usage How much memory is being used?
- Disk Usage What is the disk I/O throughput?
- Network Usage What is the network utilization?

32

Tools we will use to Monitor Performance

- SAR System Activity Recorder
- VMSTAT CPU and virtual memory statistics
- MPSTAT Per-CPU statistics
- IOSTAT Disk I/O throughput statistics
- VXSTAT Veritas Volume Manager statistics
- PS Unix processes statistics
- TOP Top Unix processes statistics
- PSTAT Top Solaris processes statistics
- NETSTAT Network statistics

Informix Tools we will use to Monitor Performance

- ONSTAT Shared memory server statistics
- SYSMASTER DATABASE Shared memory server statistics
- Server Studio Command and control center for Informix Server
- OAT Open Admin Tool for Informix

34

SAR – System Activity Recorder (old method)

- Setup as a cron job to collect statistics and saves them to a file /var/adm/sa/sa??
- Example Cron setup to collect data every 15 minutes:

0,15,30,45 * * * * /usr/lib/sa/sa1

- SAR command displays the data collected
- Can also be run in real-time:

sar 55

SAR – System Activity Recorder (New Method)

- Setup via systemctl and runs every 10 minutes:
- To enable SAR

systemctl enable sysstat systemctl start sysstat systemctl status sysstat -I

36

SAR Reporting Options

- -a Report use of file access system routines
- -b Report buffer activity
- -c Report system calls
- -d Report activity for each device (disk or tape drive)
- -g Report paging activities
- -k Report kernel memory allocation (KMA) activities
- -m Report message and semaphore activities
- -p Report paging activities
- -q Report average queue length
- -r Report unused memory pages
- -u Report CPU utilization (the default)
- -v Report status of process, i-node, file tables
- -w Report system swapping and switching activity
- -y Report TTY device activity
- -A Report all data. Equivalent to -abcdgkmpqruvwy

SAR Collection Options

- -i sec Select data at intervals as close as possible to sec seconds.
- -s time Select data later than time in the form hh[:mm]. Default is 08:00.
- -f filename Use filename as the data source for sar.
 Default is the current daily data file /var/log/sa or /var/adm/sa/sadd.
- -o filename Save samples in file, filename, in binary format.

SAR – Default Output

05:40:02 PM	CPU	%user	%nice	%system	%iowait	%steal	%idle
05:50:01 PM	all	3.12	0.00	0.53	11.05	0.00	85.30
06:00:01 PM	all	5.79	0.00	1.23	54.54	0.00	38.43
06:10:01 PM	all	1.72	0.00	1.09	56.57	0.00	40.62
Average:	all	1.63	0.00	0.43	17.83	0.00	80.12

SAR – Default Output

00:00:00	%usr	%sys	%W	io 🤅	6idle
07:00:00	27	3	3	0	70
07:15:02	61	e	6	0	33
07:30:01	47	۷	1	0	49
07:45:01	28	3	3	0	70
08:00:00	30	2	2	0	68
08:15:00	50	3	3	0	46
08:30:01	56	3	3	0	41
08:45:00	22	2	2	0	77

SAR – Default Output

•Report CPU utilization. The report may show the following fields:

- %user Percentage of CPU utilization that occurred while executing at the user level (application).
- %nice Percentage of CPU utilization that occurred while executing at the user level with nice priority.
- %system Percentage of CPU utilization that occurred while executing at the system level (kernel). Includes time spent servicing hardware and software interrupts.
- %iowait Percentage of time that the CPU or CPUs were idle during which the system had an outstanding disk I/O request.
- %steal Percentage of time spent in involuntary wait by the virtual CPU or CPUs while the hypervisor was servicing another virtual processor.
- %idle Percentage of time that the CPU or CPUs were idle and the system did not have an outstanding disk I/O request.

SAR -q (Run Queue)

05:40:02 PM	runq-sz	plist-sz	ldavg-1	ldavg-5	ldavg-15	blocked
05:50:01 PM	1	243	1.15	1.72	3.20	0
06:00:01 PM	1	253	7.12	6.45	5.12	7
06:10:01 PM	0	241	4.83	6.35	5.84	1
06:20:01 PM	2	251	1.38	1.88	3.62	0
Average:	0	230	1.52	1.56	1.48	1

SAR -q (Run Queue)

•Report queue length and load averages. The following values are displayed:

- runq-sz Run queue length (number of tasks waiting for run time).
- plist-sz Number of tasks in the task list.
- Idavg-1 System load average for the last minute. The load average is calculated as the average number of runnable or running tasks (R state), and the number of tasks in uninterruptible sleep (D state) over the specified interval.
- Ldavg-5 System load average for the past 5 minutes.
- Idavg-15 System load average for the past 15 minutes.
- blocked Number of tasks currently blocked, waiting for I/O to complete.

SAR –b (I/O and Transfer Rate Statistics)

05:40:02 PM	tps	rtps	wtps	bread/s	bwrtn/s
05:50:01 PM	568.08	59.05	509.04	6400.67	19794.25
06:00:01 PM	2917.97	614.40	2303.57	14173.39	10303.80
06:10:01 PM	2673.44	496.68	2176.76	4328.47	12792.36
06:20:01 PM	535.62	40.89	494.73	5599.77	19411.71
06:30:01 PM	2963.19	626.20	2336.99	14382.40	10273.74
Average:	747.13	141.40	605.72	3384.38	28550.81

SAR –b (I/O and Transfer Rate Statistics)

•Report I/O and transfer rate statistics. The following values are displayed:

- tps Total number of transfers per second that were issued to physical devices. A transfer is an I/O request to a physical device. Multiple logical requests can be combined into a single I/O request to the device. A transfer is of indeterminate size.
- rtps Total number of read requests per second issued to physical devices.
- wtps Total number of write requests per second issued to physical devices.
- bread/s Total amount of data read from the devices in blocks per second. Blocks are equivalent to sectors and have a size of 512 bytes.
- bwrtn/s Total amount of data written to devices in blocks per second.

VMSTAT – CPU and Memory

• Options:

vmstat [-cipsS] [disks] [interval [count]]

• Example:

[informix@tiger8:~ train1 > vmstat 5 5															
ſ	pro	cs -		mem(ory		swa	р	io)	-syste	em——		cpu		-
	r	b	swpd	free	buff	cache	si	S 0	bi	bo	in	CS	us s	y id	wa s	t ,
	0	1	76	163264	7748	7468240	0	0	265	457	117	1:	. 2	0 78	20	0
	0	1	76	166976	7768	7483212	0	0	621	9896	746	576	⁷ 2	0 88	9	0
	0	1	76	173340	7776	7473724	0	0	461	28525	1275	215:	.8 2	18	79	0
	0	1	76	159512	7788	7487652	0	0	465	20979	1107	190:	21 1	18	7 11	0
	1	0	76	160864	7748	7485720	0	0	1438	18420	1016	1519	2 1	18	8 11	0
ł	inf	ormi	x0tia	er8:~ tr	ain1 >											

MPSTAT – Per-CPU Statistics

• Options:

mpstat [-p | -P set] [interval [count]]

• Example on a 8 CPU machine:

[informix@t	tig	er8:~	train1 >	> mpstat	-P ALL							
Linux 4.4.	.92	-31-de	efault (†	tiger8)	:	11/27/2017		x86_64_	(8 CPU)		
06:47:07 F	M	CPU	%usr	%nice	%sys	%iowait	%irq	%soft	%steal	%guest	%gnice	%idle
06:47:07 F	рМ	all	1.80	0.00	0.45	19.46	0.00	0.02	0.00	0.00	0.00	78.27
06:47:07 F	M	0	1.57	0.00	0.34	15.27	0.00	0.02	0.00	0.00	0.00	82.80
06:47:07 F	M	1	1.56	0.00	0.32	15.52	0.00	0.00	0.00	0.00	0.00	82.59
06:47:07 F	M	2	0.84	0.00	0.45	15.76	0.00	0.09	0.00	0.00	0.00	82.86
06:47:07 F	M	3	1.12	0.00	0.42	18.28	0.00	0.00	0.00	0.00	0.00	80.19
06:47:07 F	M	4	2.44	0.00	0.58	26.51	0.00	0.00	0.00	0.00	0.00	70.47
06:47:07 F	M	5	2.70	0.00	0.58	26.58	0.00	0.00	0.00	0.00	0.00	70.13
06:47:07 F	M	6	3.16	0.00	0.51	21.15	0.00	0.00	0.00	0.00	0.00	75.18
06:47:07 F	М	7	2.42	0.00	0.58	25.27	0.00	0.00	0.00	0.00	0.00	71.72
informix@t	tig	er8:~	train1 >	>								

IOSTAT – Disk I/O Statistics

			L > iostat 5 5 (tiger8)	11/27/201	.7 _x86	_64_	(8 CPU)
avg-cpu:		%nice 0.00	%system %iowai 0.47 19.6		%idle 78.13		
Device: sdb sda		tps 0.01 785.93		0.08	9366		
avg-cpu:	%user 0.18		%system %iowai 0.38 11.7				
Device: sdb sda		tps 0.00 638.00		0.00	0	0	
avg-cpu:	%user 0.20		%system %iowai 0.25 11.7				
Device: sdb sda		tps 0.00 767.80	0.00	0.00	0	0	

VXSTAT – Veritas Volume Manager Statistics

- Part of Veritas Volume Manager
- To display disk statistics, use the vxstat -d command:

	OPERA	FIONS	BLOC	KS	AVG TIME(ms)
TYP NAME	READ	WRITE	READ	WRITE	READ WRITE
dm disk01	40473	174045	455898	951379	29.5 35.4
dm disk02	32668	16873	470337	351351	35.2 102.9
dm disk03	55249	60043	780779	731979	35.3 61.2
dm disk04	11909	13745	114508	128605	25.0 30.7

PS – Unix Processes Statistics

• Key Options:

- -e List information about every process now running.
- -f Generate a full listing.
- -I Generate a long listing.
- -P Print the number of the processor to which the process or lwp is bound.
- -t term List only process data associated with term.
- -u uidlist List only process data whose effective user ID number or login name is given in uidlist.
- -U uidlist List information for processes whose real user ID numbers or login names are given in uidlist.

PS – Unix Processes Examples

lester@atlas >ps -fu informix more													
	UID	PID	PPID	С	STIME	TTY	TIME	CMD					
	informix	416	1	0	Apr 17	?	0:05	oninit -yv					
	informix	418	417	0	Apr 17	?	0:05	oninit -yv					
	informix	428	1	0	Apr 17	?	0:11	oninit -yv					
	informix	4085	3984	0	14:45:38	pts/2	0:00	dbaccess					
	informix	3984	3966	0	14:44:03	pts/2	0:00	bash					
	informix	3927	1	0	14:23:31	?	16:21	oninit					
	informix	3966	874	0	14:37:34	pts/2	0:00	-ksh					

lester@atlas >ps -lu informix | more

			-									
F	S	UID	PID	PPID	С	PRI	NI	ADDR	SZ	WCHAN TTY	TIME	CMD
8	S	202	416	1	0	41	20	?	17648	??	0:05	oninit
С	S	202	418	417	0	41	20	?	17647	? ?	0:05	oninit
8	S	202	428	1	0	40	20	?	14792	? ?	0:11	oninit
8	S	202	4085	3984	0	41	20	?	654	? pts/2	0:00	dbaccess
8	S	202	3984	3966	0	51	20	?	311	? pts/2	0:00	bash
8	S	202	3927	1	0	41	20	?	17389	??	16:21	oninit
8	S	202	3966	874	0	51	20	?	236	? pts/2	0:00	ksh

TOP – Top Unix Processes

last pid: 914	6; loa	d aver	ages:	1.76,	1.65	, 1.61		20:16:10							
143 process <u>es:</u>	143 processes: 133 sleeping, 3 zombie, 5 stopped, 2 on cpu														
CPU states 87.6% idle, 9.9% user, 2.4% kernel, 0.0% iowait, 0.0% swap															
Memory: 12G real, 1122M free, 3899M swap in use, 8K swap free															
				.											
PID USERNAME	THR PR	I NICE	SIZE	RES	STATE	TIME	CPU	COMMAND							
7928 root	75	8 C	28M	26M	sleep	8:36	5.17%	dsmc							
2553 informix	53	0 -10	3625M	2896M	cpu17	457.3H	1.58%	oninit							
2549 informix	55	9 -10	3625M	2952М	sleep	502.2H	1.23%	oninit							
2551 informix	55	1 -10	3625M	2907М	sleep	613.5H	1.19%	oninit							
2555 informix	55	1 -10	3625M	2888M	sleep	373 . 4H	0.92%	oninit							
2539 informix	55	9 -10	3625M	2959М	sleep	496.5H	0.80%	oninit							
2550 informix	55	9 -10	3625M	2935м	sleep	684.9H	0.70%	oninit							

2000	THEOTHER	0	ΟI	± 4	502511	200011	DICCP	575.111	0.520	OUTTUITC
2539	informix	5	59	-10	3625M	2959M	sleep	496 . 5H	0.80%	oninit
2550	informix	5	59	-10	3625M	2935M	sleep	684.9н	0.70%	oninit
9145	lester	1	50	C	2544K	2120K	cpu16	0:01	0.61%	top
2552	informix	5	59	-10	3625M	2906M	sleep	528.3H	0.59%	oninit
2554	informix	5	59	-10	3625M	2894M	sleep	396.3H	0.52%	oninit
2329	root	1	58	C	13M	3040K	sleep	579 : 30	0.02%	jre
9121	root	1	58	C	5112K	2264K	sleep	0:00	0.02%	bpsched
14191	root	1	48	C	5176K	2336K	sleep	0:13	0.01%	bpsched
9114	lester	1	43	C	1648K	1200K	sleep	0:00	0.01%	ksh
9117	root	1	48	C	10M	5808K	sleep	0:00	0 01%	bprd

Advanced DataTools

TOP – Top Unix Processes

Τa	asks	18:51:49 : 214 tota	1,	3 1	running,	211 sle	eeping,		0 stop	pped,	0 zombie	
		s): 21.2 u em: 16323									hi, 0.2 5364 buf	si, 0.0 st fers
K	LB SV	vap: 16779	260	tota	al,	76 use	ed, 1677	91	L84 fre	ee. 74	91648 cac	hed Mem
	PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
		informix			34708					0.030		dbimport
		informix								0.668		
		informix										
1		informix			3671412					0.365		
		informix			3671836					0.395		
		root			3669420					0.087		
		root			3669420					0.085		
		root			3669420					0.085	2:56.00	
		root			3669420					0.083		
		root			3669420					0.077		
		root			3669420					0.092	5:33.37	
11		root			3669420					0.063		
		root		-20	0	0				0.000		kworker/2:1H
		root	20		12024					0.028		haveged
		root	20		0	0				0.000		kworker/u16:0
10	5289	informix	20	0	15352	2676			0.332	0.016	0:00.02	

NETSTAT – Network Statistics

• Options:

usage: netstat [-anv] [-f address_family]
netstat [-g | -p | -s] [-n] [-f address_family] [-P protocol]
netstat -m
netstat -i [-I interface] [-an] [-f address_family] [interval]
netstat -r [-anv] [-f address_family]
netstat -M [-ns] [-f address_family]
netstat -D [-I interface] [-f address family]

• Example

leste	r@atla	as >netstat -i								
Name	Mtu	Net/Dest	Address	Ipkts	Ierrs	Opkts	Oerrs	Collis	Queue	
hme0	1500	atlas.addt.com	m atlas.addt.co	om 92751	0	50571	0	0	0	
100	8232	loopback	localhost	80430	0	80430	0	0	0	

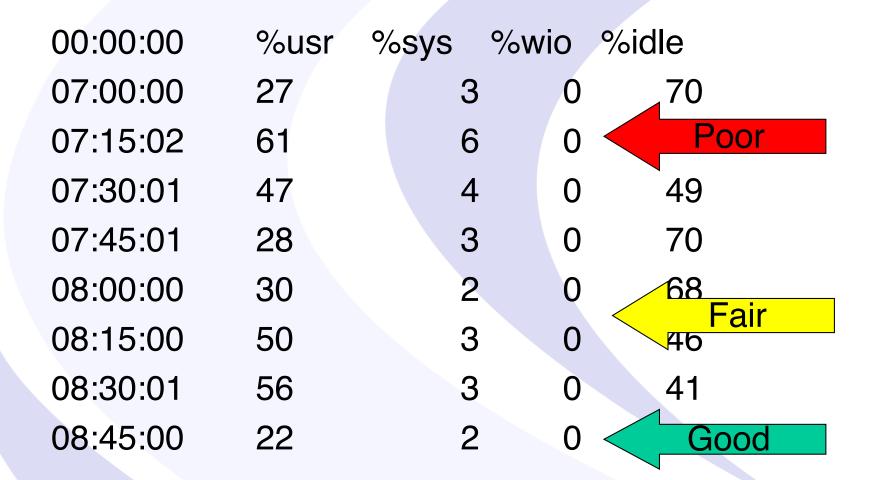
Performance Metrics Goals

CPU Monitoring

- Are the CPUs overloaded?
- Factors:
 - Number of CPUs
 - Speed of CPUs (old vs new systems)
 - Number of process needing CPU time.

How Busy are the CPU's?

- Tools to monitor:
 - sar –u
 - vmstat
 - mpstat
 - top, prstat


Performance Guideline - % CPU busy:

- < 30 % **-** Good
- 30-60% Fair
- > 60% Poor

Advanced DataTools

57

SAR – Example

How many process are waiting to run on the CPUs?

- Tools to monitor Load Average:
 - sar -q
 - Uptime
- <u>Performance Guideline number of</u> <u>waiting processes:</u>
 - < 2 per CPU Good</p>
 - 2-4 per CPU Fair
 - ->4 per CPU Poor

CPU Load Average Example:

lester@atlas >uptime 9:58pm up 2 day(s), 5:52, 4 users, load average: 0.03, 0.04, 0.04

- Displays run queue over the last 1, 5, and 15 minutes
- On a 4 CPU machine:

$$- < 2 \times 4 = Good$$

$$-2-4 \times 4 = Fair$$

 $->4 \times 4 = Poor$

60

Memory Monitoring

- Is memory being over-used or under-used?
- Memory shortage causing swapping to disk.
- Factors:
 - Amount of RAM
 - 32 bit vs 64 bit OS and applications
 - 32 bit Informix IDS limited to:
 - •3.6 GB on Solaris
 - •2 GB on AIX
 - •2 GB on Windows
- One of best Informix IDS performance improvements is adding BUFFERS

How much Memory is Used?

- Tools to monitor
 - top
 - sar –r
 - vmstat
- Performance Guidelines
 - Don't monitor free memory since a good
 OS will use all extra memory as file system cache
 - Monitor swap space and paging in/outs

Memory – Key is to Monitor Paging In/Out

Out of Memory

- Monitor vmstat:
 - pi kilobytes paged in
 - po kilobytes paged out
- Monitor sar –g
 - pgout/s page-out requests per second.
 - ppgout/s pages paged-out per second.
- Monitor sar –p
 - pgin/s page-in requests per second.
 - ppgin/s pages paged-in per second.

Memory – Key is to Monitor Swap In/Out

• Monitor vmstat:

					vmstat 5											
pro	cs		mem	ory		swa	p <		Mo	onito	or S	Wa	ąp)		_
r	b	swpd	free	buff	cache	si	S 0	bi	bo	in	CS U	IS S	уi	Ld v	va s	t
0	3	76	173936	5012	7481380	0	0	286	481	123	101	2	0	77	21	0
0	7	76	160536	5028	7495156	0	0	2320	5074	2241	9863	0	1	40	59	0
1	3	76	172688	5040	7482208	0	0	2378	4696	2206	9721	0	1	42	57	0
1	2	76	158064	5052	7497060	0	0	2362	4991	2248	9802	0	1	42	57	0
0	7	76	172284	5072	7481780	0	0	2174	4920	2183	9656	0	1	41	58	0
:e		· · · · · · · ·	0 . +													

What Processes are Using the Most Memory?

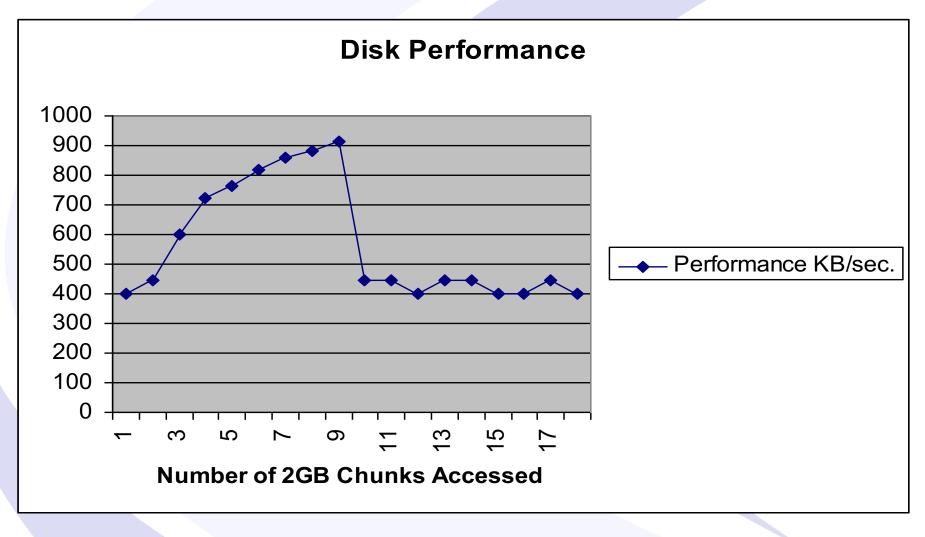
- Tools to monitor look at the SIZE column:
 - top
 - prstat
 - ps
- Performance Guideline for Informix:
 - BUFFERS number of shared memory buffers
 - SHMVIRTSIZE initial virtual shared memory segment size
 - SHMADD size of new shared memory segments
 - SHMTOTAL total size of shared memory

Monitoring Disks

- Goal is to balance I/O across all disks

 Use: sar and iostat
- Find the FAST spot on the disk and locate key chunks there
- Find the optimal disk throughput

Disk Throughput


Example pfread – 2 GB chunks on a 72 GB disk

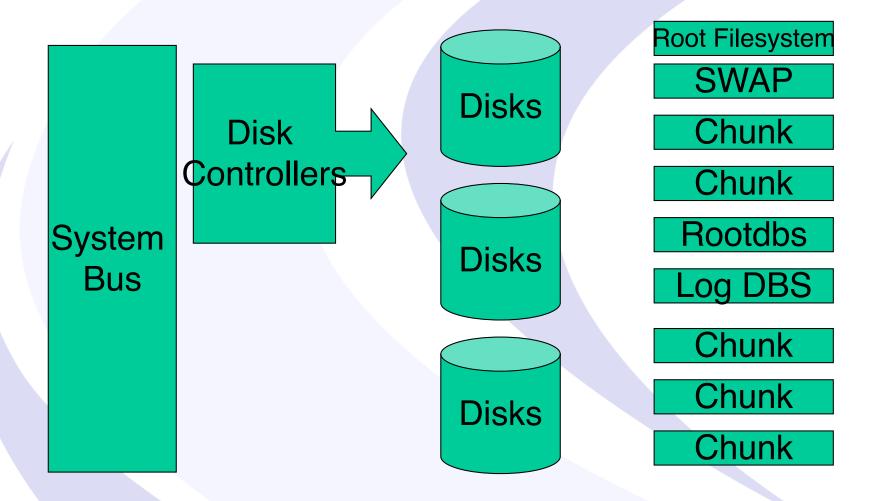
pfread.ksh 1 30 /informixchunks/d4chk14

/informixchunks/d4chk14	:	1 concurrent read threads	500 KB/sec.
/informixchunks/d4chk14	:	2 concurrent read threads	500 KB/sec.
/informixchunks/d4chk14	:	3 concurrent read threads	750 KB/sec.
/informixchunks/d4chk14	:	4 concurrent read threads	800 KB/sec.
/informixchunks/d4chk14	:	5 concurrent read threads	1000 KB/sec.
/informixchunks/d4chk14	:	6 concurrent read threads	996 KB/sec.
/informixchunks/d4chk14	:	7 concurrent read threads	1071 KB/sec.
/informixchunks/d4chk14	:	8 concurrent read threads	1082 KB/sec.
/informixchunks/d4chk14	:	9 concurrent read threads	1125 KB/sec.
/informixchunks/d4chk14	:	10 concurrent read threads	500 KB/sec.
/informixchunks/d4chk14	:	11 concurrent read threads	444 KB/sec.
/informixchunks/d4chk14	:	12 concurrent read threads	500 KB/sec.

 Best performance is using 9 x 2GB chunks = 18GB of the 72 GB disk

Disk Throughput – 36 GB Disk

Disk Layout - The FASTEST location on a disk is where the disk arm has to move the least to read or write data


Monitor Disk I/O with SAR

- Report activity for each block device (disk or tape)
 - %busy portion of time device was busy servicing a transfer request – How busy are your disks?
 - avque average number of requests outstanding during that time.
 - read/s, write/s, blks/s number of read/write transfers from or to device, number of bytes transferred in 512-byte units.
 - avwait average wait time in milliseconds.
 - avserv average service time in milliseconds.

Example sar –d

00:00:00	device	%busy	avque	r+w/s	blks/s	avwait	avserv
00:15:00	nfs1	0	0.0	0	0	0.0	0.0
	sd7	11	0.7	17	225	0.0	40.2
	sd7,a	0	0.0	0	0	0.0	0.0
	sd7,b	0	0.0	0	0	0.0	0.0
	sd7,c	0	0.0	0	0	0.0	0.0
	sd7,d	0	0.0	0	0	0.0	0.0
	sd7,e	11	0.7	17	225	0.0	40.2
70							

Map Your Disk Drives

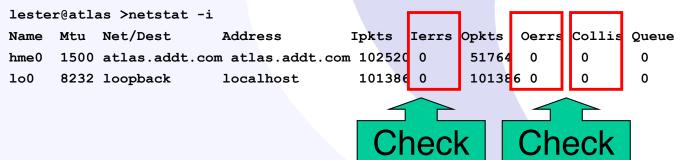
Create a Disk Layout Spreadsheet

- Controller/ Disk Array
- Disk
- Logical Volumes or Slices
- Chunks, Filesystems, etc...
- Tables in Chunks
- Compare results from sar -d and onstat
 -d

Disk Performance Spreadsheet

Disk Performance										
		Perfor	mance							
Controller	Disk	Volume	Chunk/Filesystem	onstat -d	sar -d					
c1	disk1	d1v1								
c1	disk1	d1v2								
c1	disk1	d1v3								
c1	disk1	d1v4								
c1	disk2	d2v1								
c1	disk2	d2v2								

Monitoring Network


- How measure real output of network interface?
 - FTP Test How long does it take to ftp a 2GB file to your destination? KB per second
 - Database server cannot send data out any faster than ftp
- Measure network errors and collusions
 Netstat –i

74

Network Errors and Collisions

- Tool to monitor:
 - netstat –i

• Example output:

 Performance Guideline – no errors or collisions

Questions?

Send follow-up questions to lester@advancedatatools.com

Next Webcast Informix Best Practices

- Automatic Informix Range Interval Partitioning andRolling Windows to Organize your data
 - by Lester Knutsen June 21 at 2:00pm EDT

Please register for each webcast here at:

http://advancedatatools.com/Informix/NextWebcast.html

Informix Training 2018

Advanced Informix Performance Tuning

• February 5-8, 2018 - Completed

Informix for Database Administrators

- May 21-24, 2018 Full
- September 17-20, 2018
- All courses can be taken online on the web from your desk or at our training center in Virginia.
- We guarantee to *NEVER* cancel a course and will teach a course as long as one student is registered!
- Please register early as the last two courses have filled up and we have not been able to accommodate everyone.

http://advancedatatools.com/Training/Informix Training.html

New Training Servers

Each Student in class will have a server running Informix with:

- 8 Cores
- 16 GB RAM
- 1 SSD Disk
- 1-4 more disks

Informix Support and Training from the Informix Champions!

Advanced DataTools is an Advanced Level IBM Informix Data Management Partner, and has been an authorized Informix partner since 1993. We have a long-term relationship with IBM, we have priority access to high-level support staff, technical information, and Beta programs. Our team has been working with Informix since its inception, and includes 8 Senior Informix Database Consultants, 4 IBM Champions, 2 IIUG Director's Award winners, and an IBM Gold Consultant. We have Informix specialists Lester Knutsen and Art Kagel available to support your Informix performance tuning and monitoring requirements!

- Informix Remote DBA Support Monitoring
- Informix Performance Tuning
- Informix Training
- Informix Consulting
- Informix Development

Free Informix Performance Tuning Webcast replays at:

http://advancedatatools.com/Informix/Webcasts.html Email: info@advancedatatools.com Web: http://www.advancedatatools.com

Thank You

Lester Knutsen Advanced DataTools Corporation

lester@advancedatatools.com

For more information:

http://www.advancedatatools.com