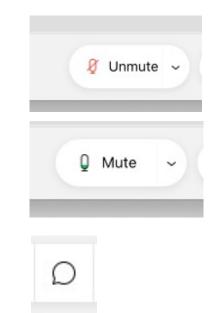
# Introduction to Informix Performance Tuning by Lester Knutsen

#### 2022 Informix Tech Talks by the IIUG



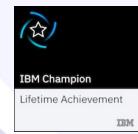

We have launched a new channel on YouTube for Informix Users! Please subscribe to our channel on YouTube to stay informed. This will be a place for Informix how-to videos. Subscribe at: https://www.youtube.com/c/InformixTechTalksbythellUG

**International Informix User Group** 

We speak Informix

# Webcast Guidelines

- The Webcast is pre-recorded. The replay and slides will be available on the IIUG Website
- Please Mute your line.
   Background sounds will distract everyone
- Use the Chat Button to ask questions






#### Lester Knutsen



Lester Knutsen is President of Advanced DataTools Corporation and has been building and managing Informix databases systems since 1983. Lester is semi-retired but continues to teach Informix classes and provide Performance Tuning consulting. Lester is an Informix IBM Lifetime Champion. Lester was one of the founders of the Washington Area Informix User Group and the International Informix Users Group.



lester@advancedatatools.com www.advancedatatools.com 703-256-0267

# Introduction to Informix Performance Tuning by Lester Knutsen

#### **2022 Informix Tech Talks by the IIUG**

Informix Tuning

## **Ten Informix Tuning Tips**

- Correct Indexes
- Shrink Schema
- Reduce Buffer Turnover
- One SHMVIRT Segment
- One LOCK Segment

- Three or more Temp
   Dbspaces
- Balance Disk IO
- Use CPUVPs
- Row Level Locking
- Update Statistics

Informix Tuning

# **Goal of Performance Tuning**

- Balance resources to get the best performance
  - Memory
  - -CPU
  - Disk
  - Network

Informix Tuning

### **Scientific Method for Tuning**

- What is the Scientific Method?
  - Ask a question Define the Problem
  - Perform research Observer and Measure
  - Construct a Hypothesis Plan a Test
  - Test Your Hypothesis Do an Experiment
  - Analyze Your Data Draw a Conclusion
  - Communicate Results Document Results
- Repeat, Repeat, Repeat

Informix Tuning

### **Benchmark Worksheet**

#### **Benchmark Worksheet**

| Lab: | Benchmarl  | <2  |
|------|------------|-----|
| LUN. | Deneminari | ` ~ |

Date:

11/28/2017

|       |                        |            | CPU %      | Disk I/O    | Buffer I/O |         |                           |
|-------|------------------------|------------|------------|-------------|------------|---------|---------------------------|
|       |                        |            | (usercpu + | (pagreads + | -          | Memory  |                           |
| Run # | Changes                | Total Time | syscpu)    | pagwrits)   | bufwrits)  | Used    | Comments                  |
| 1     | BASELINE               | 17m49.455s | 651.43     | 6494677     | 30566862   | 687428  | buffers=250000            |
| 2     | BUFFERPOOL=125000      | 8m37.551s  | 322.88     | 1402911     | 22158499   | 2933444 | buffers=1250000           |
| 3     | SHMVIRTSIZE 200000     | 8m36.411s  | 327.43     | 1402927     | 22168298   | 2982836 | One SHMVIRT Segment       |
| 4     | LOCKS 640000           | 5m20.191s  | 123.7      | 1402942     | 22180898   | 3067708 | Resident Segment inceased |
| 5     | RESIDENT -1            | 5m11.777s  | 107.3      | 680186      | 19748667   | 3070500 |                           |
| 6     | VPCLASS cpu,num=4,noag | 5m5.403s   | 108.79     | 1403024     | 22205882   | 3070500 |                           |
| 7     | VP_MEMORY_CACHE_KB     | 5m6.878s   | 108.57     | 1403389     | 22223989   | 3070500 |                           |
| 8     | PHYSBUFF 512 LOGBUFF   | 3m20.977s  | 78.13      | 673413      | 21319488   | 3072548 |                           |
| 9     | DIRECT_IO 1            | 3m27.670s  | 77.58      | 665103      | 19944711   | 3072548 |                           |
| 10    | PLOG and LOG           | 4m11.27s   | 86.68      | 1795234     | 22266939   | 3072548 |                           |
| 11    | SAME                   | 4m13.798s  | 88.15      | 1133695     | 20665709   | 3236388 |                           |
| 12    | SAME no Server restart | 3m38.265s  | 172.32     | 3439465     | 42449726   | 3236388 |                           |
| 13    | SQL changes - run1     | 2m16.111s  | 27.96      | 2321957     | 7626794    | 3236388 |                           |
| 14    | SQL changes - run2     | 3m17.596s  | 94.72      | 2172403     | 13550781   | 3236388 |                           |
| 15    | SQL changes - run3     | 0m21.523s  | 9          | 486110      | 3738464    | 3236388 |                           |
| 16    |                        |            |            |             |            |         |                           |
| 17    |                        |            |            |             |            |         |                           |
| 18    |                        |            |            |             |            |         |                           |
| 19    |                        |            |            |             |            |         |                           |
| 20    |                        |            |            |             |            |         |                           |

Informix Tuning

### **Key Metrics for Tuning**

| user                          | 590m16.824s<br>0m0.040s<br>0m0.008s |                        |                         |                    |                       |                     |                      |             |
|-------------------------------|-------------------------------------|------------------------|-------------------------|--------------------|-----------------------|---------------------|----------------------|-------------|
| IBM Info                      | rmix Dynam                          | rver V                 | JN 14.10.F              | C3 On-             | -Line                 | J9:55·              | 4408904 Kby          | tes         |
| Profile<br>dskreads<br>135662 | pagreads<br>137436                  | bufreads<br>1221739607 | %cached ds<br>54 100.00 | kwrits<br>3158796  | pagwrits<br>4171669   | bufwrits<br>8263397 | %cached<br>61.77     |             |
| isamtot<br>26538791           | open<br>59495                       | start<br>154488        | read<br>7272863         | write<br>150/243   | rewrite<br>1914195    | delete<br>641       | commit<br>7458       | rollbk<br>Ø |
| gp_read<br>0                  | gp_write<br>0                       | gp_rewrt<br>0          | gp_del<br>0             | allor              | 0free                 | gp_curs<br>0        |                      |             |
| ovlock<br>Ø                   | ovuserthr<br>0                      | ead ovbuff<br>0        | usercpu<br>35903.43     | syscpu<br>52.30    | numckpts<br>121       | flushes<br>124      |                      |             |
| bufwaits<br>163               | lokwaits<br>0                       | lockreqs<br>6108028621 | deadlks<br>7 0          | dltouts<br>0       | ckpwaits<br>6         | compress<br>34362   | s seqscans<br>101419 |             |
| ixda-RA<br>900                | idx-RA<br>144                       | da-RA<br>108919        | logrec-RA<br>2          | RA-pgsus<br>109062 | sed lchwaits<br>12056 |                     |                      |             |

Informix Tuning

### **Benchmark Variance**

- 8 Machines with same hardware repeatedly running the same script for 24 hours
  - 5% to 6% difference in times
- VM Machines:
  - 21% to 26% difference in times
- AWS Machines:
  - 14% to 58% depending on configuration
- Best result is to run a test 3 times

# **One Change at a Time**

- Make only one change at a time
- Measure the effect of the change
  - Clock Time
  - CPU Time
  - Memory Usage
  - Disk I/O Throughput
  - Network Traffic
- Evaluate the change

## **Ten Informix Tuning Tips**

- Correct Indexes
- Shrink Schema
- Reduce Buffer Turnover
- One SHMVIRT Segment
- One LOCK Segment

- Three or more Temp
   Dbspaces
- Balance Disk IO
- Use CPUVPs
- Row Level Locking
- Update Statistics

Informix Tuning

### 1 - Correct Indexes

#### Look for:

- Unnecessary sequential scans
- Excessive disk reads
- Avoid Duplicate Indexes

Informix Tuning

### **Index Performance Example**

- Same SQL Query (poorly written)
- Server Default Configuration
- Server Moderate Tuning (More Memory BUFFERS)
- Server Default Configuration Fixed one missing Index

# Correct Indexes Performance Example

| Server Configuration  | Index         | <u>Minutes</u> | <u>Hours</u> | <u>Days</u> |
|-----------------------|---------------|----------------|--------------|-------------|
| Default Configuration | Missing Index | 15,046.00      | 250.77       | 10.45       |
|                       |               |                |              |             |
| Moderate Tuning       | Missing Index | 590.00         | 9.83         | 0.41        |
| Default Configuration | Added Index   | 7.00           | 0.12         | 0.00        |

Informix Tuning

# Correct Indexes Performance Example

| Index            | Minutes                              | Hours                                                    | Days                                                            | Pages Read                                                           | Pages<br>Write                                                                              | BTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|--------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Missing<br>Index | 15,046                               | 251                                                      | 10                                                              | 183,378,880,757                                                      | 18,579,020                                                                                  | 4,779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>j</b> 97,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 264,884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Missing<br>Index | 590                                  | 10                                                       | 0                                                               | 122,173,960,754                                                      | 8,263,397                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35,956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,408,904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Added            |                                      |                                                          |                                                                 | 71 570 700                                                           |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | Missing<br>Index<br>Missing<br>Index | Missing<br>Index 15,046<br>Missing<br>Index 590<br>Added | Missing<br>Index 15,046 251<br>Missing<br>Index 590 10<br>Added | Missing<br>Index 15,046 251 10<br>Missing<br>Index 590 10 0<br>Added | Missing<br>Index 15,046 251 10 183,378,880,757<br>Missing<br>Index 590 10 0 122,173,960,754 | IndexMinutesHoursDaysPages ReadWriteMissing<br>Index15,04625110183,378,880,75718,579,020Missing<br>Index590100122,173,960,7548,263,397AddedImage: Second seco | IndexMinutesHoursDaysPages ReadWriteBTRMissing<br>Index15,04625110183,378,880,75718,579,0204,779Missing<br>Index590100122,173,960,7548,263,3971AddedImage: Second sec | IndexMinutesHoursDaysPages ReadWriteBTRCPUMissing<br>Index15,04625110183,378,880,75718,579,0204,77997,001Missing<br>Index590100122,173,960,7548,263,397135,956AddedImage: State of the state o |

Informix Tuning

### **Find Tables with Scans**

Module: @(#)table\_with\_seqscans.sql 2.3 Date: 2020/01/01
 Author: Lester Knutsen Email: lester@advancedatatools.com
 Advanced DataTools Corporation
 Description: Find tables with sequential scans

#### database sysmaster;

select first 100 dbsname database, tabname table, partnum partnumber, ti\_npdata table\_size\_pages, sum(seqscans) total\_scans, (ti\_npdata \* (sum(seqscans))) total\_pages\_scaned sysptprof, systabinfo from sysptprof.partnum = systabinfo.ti\_partnum where and seqscans > 0and tabname not in ( select tabname from systables where tabid < 100 ) and dbsname not in ( "sysmaster", "sysadmin" , "sysuser", "sysutils" ) group by 1, 2, 3, 4 order by 6 desc

Informix Tuning

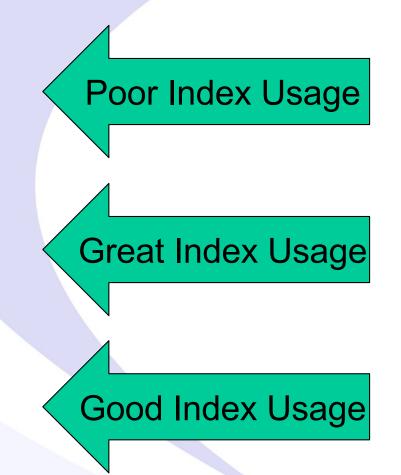
### How to Monitor Index Usage

- -- ## Module: @(#)index\_usage2.sql 2.0 Date: 08/25/2019
- -- ## Author: Lester Knutsen Email: lester@advancedatatools.com
- -- ## Advanced DataTools Corporation

#### select

```
t.tabname,
        i.indexname,
        bufreads,
        bufwrites,
        case
                when bufwrites = 0 then bufreads
                when bufreads = 0 then 0
                else ( bufreads /bufwrites )
        end ratio
        systables t, sysfragments i, outer sysmaster:sysptprof p
from
       t.tabid = i.tabid
where
        i.fragtype = "I"
and
        i.partn = p.partnum
and
        t.tabid > 99;
and
```

### How to Monitor Index Usage


| tabname   | state              |
|-----------|--------------------|
| indexname | idx_state_1        |
| bufreads  | 15                 |
| bufwrites | 11                 |
| ratio     | 1.3636363636363636 |
|           |                    |

tabname indexname bufreads bufwrites ratio

zip idx\_zip\_1 630617 931 677.354457572503

tabname benc indexname idx\_ bufreads 2141 bufwrites 4614 ratio 46.4

benchmark idx\_benchmark\_1 214154 4614 46.4139575205895



# 2 - Shrink Table Schema

- Reduce Page Size so more rows fit on a page
- Divide Wide Table into two with 1 to 1 relationship
  - Master Table with the most used columns
  - Extra Table with the seldom used columns

### Shrink Table Schema Example 2 minutes to 5 seconds

| real 2m20.711<br>user 0m0.004s<br>sys 0m0.006s                                         | real 0m5.5069<br>user 0m0.007s<br>sys 0m0.004s                                         |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| IBM Informix Dynamic Server Version 14.10<br>2022-02-28 12:53:17                       | 0 IBM Informix Dynamic Server Version 14.10<br>2022-02-28 12:56:56                     |  |
| Profile<br>dskreads pagreads bufreads %cached<br>87604503 5286695366 20592636510 99.62 | Profile<br>dskreads pagreads bufreads %cached<br>87604508 5286808892 20594375341 99.62 |  |
| isamtot open start read<br>23077249940 2363060 1996032 8320542                         | isamtot open start read<br>23080004364 2363194 1996152 8323561                         |  |
| Table Name bills<br>Owner informix<br>Row Size 1266<br>Number of Rows 605280           | Table Name bills<br>Owner informix<br>Row Size 116<br>Number of Rows 605280            |  |
| Number of Columns19Date Created02/28/2022                                              | Number of Columns 13<br>Date Created 02/28/2022                                        |  |

Informix Tuning

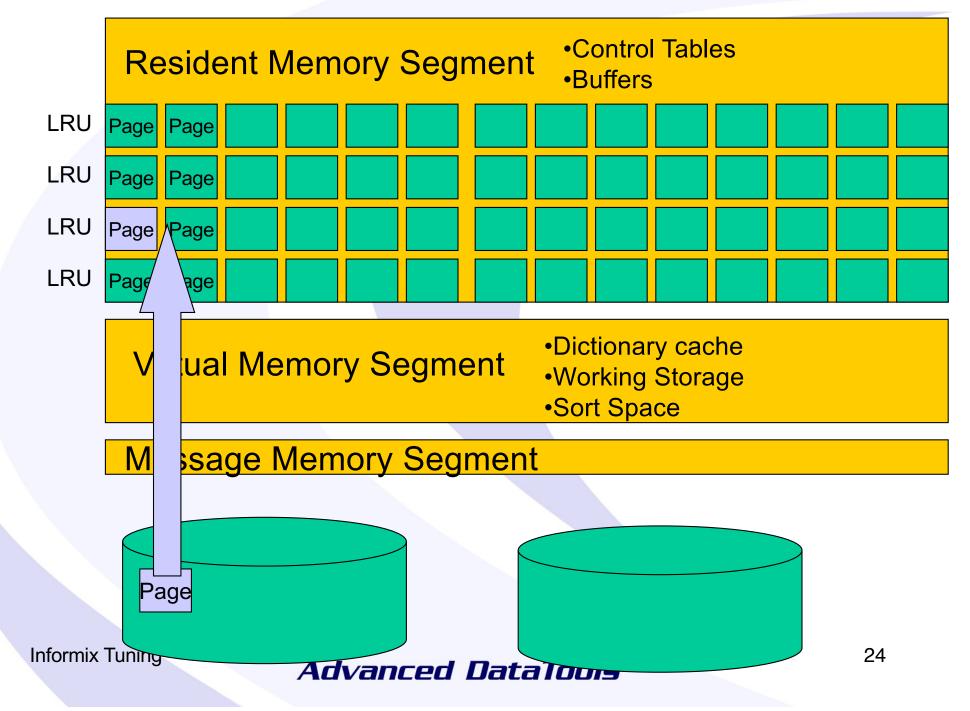
### **Tools to Monitor Schema**

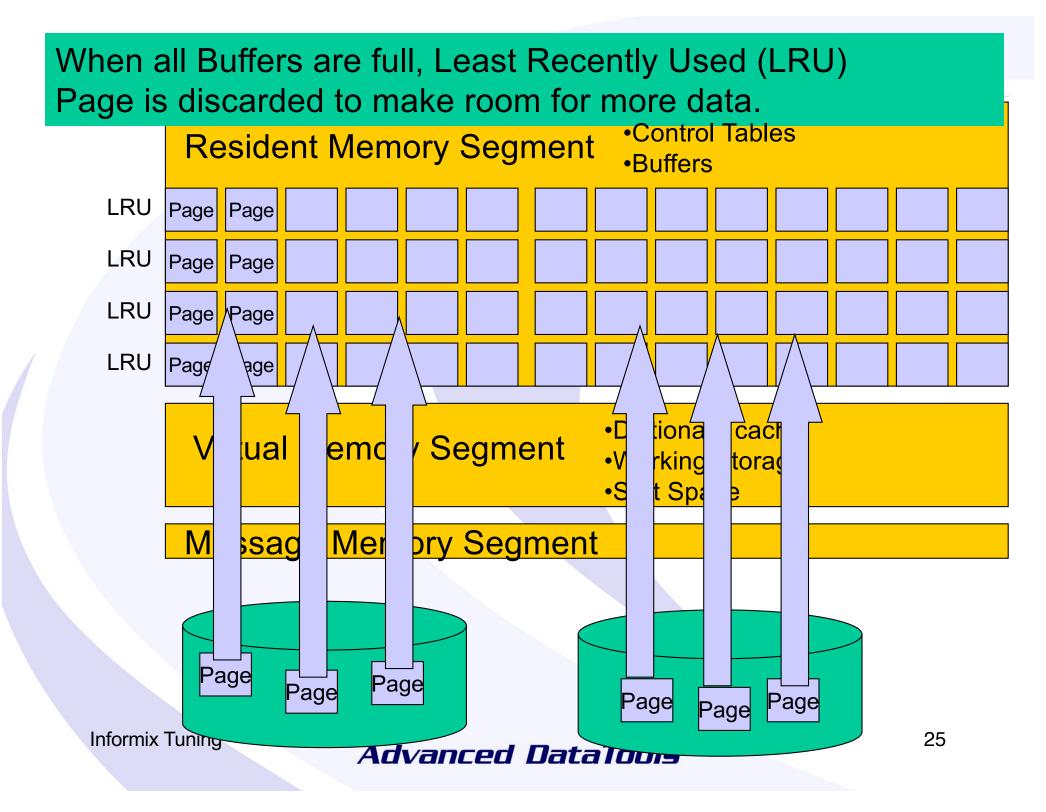
- Art Kagel's Script waste.bash
- Informix Compression Estimator

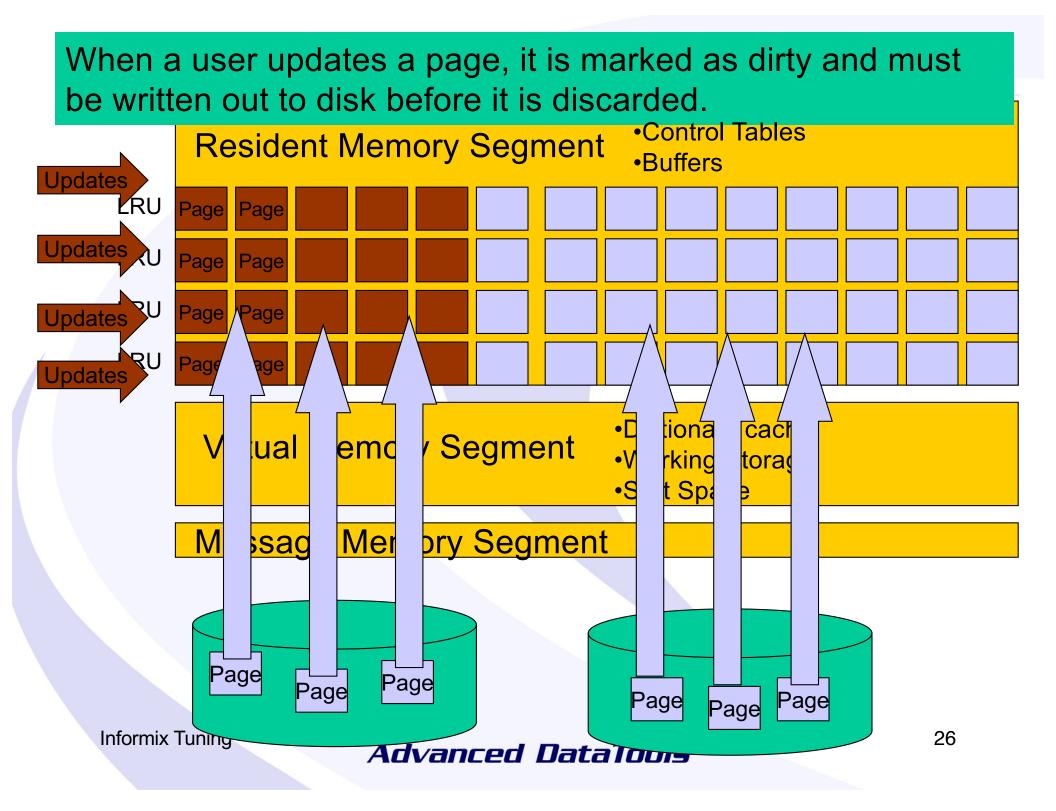
database sysadmin; -- Estimate Compression Execute function task ("table estimate\_compression", "bills", "benchmark2"); Execute function task ("table estimate\_compression", "customer", "benchmark2");

#### Waste Calculation

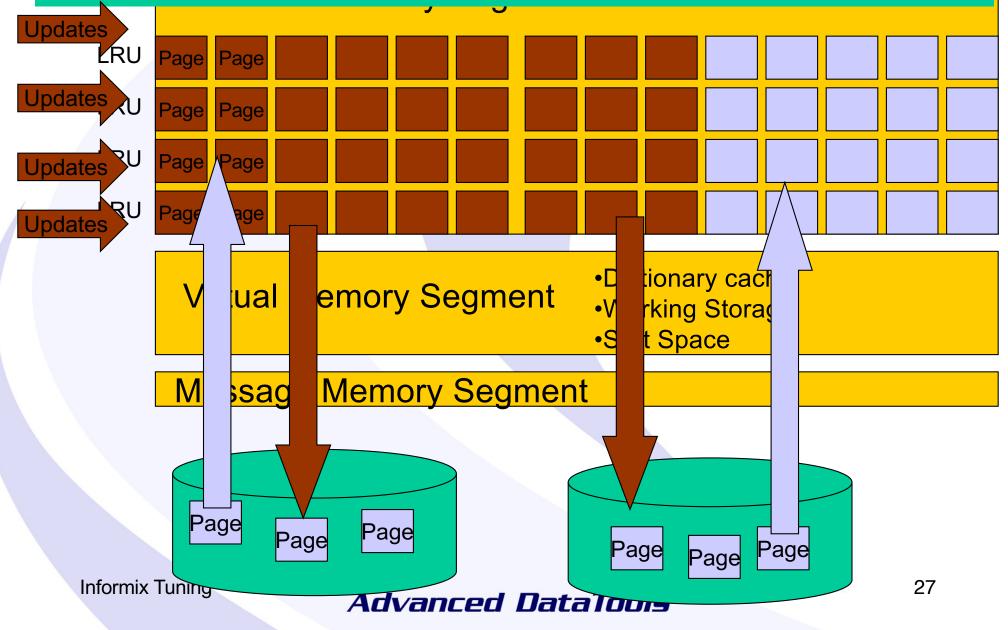
Rows per Page = (( Page\_Size - 28) / ( Row\_Size +4 )) Data Size per Page = ( Rows per Page \* ( Row\_Size +4 )) Waste per page = (( Page\_Size - 28) - Data Size per Page ) Estimated Table Waste = ( Waste per page \* npused )


Informix Tuning

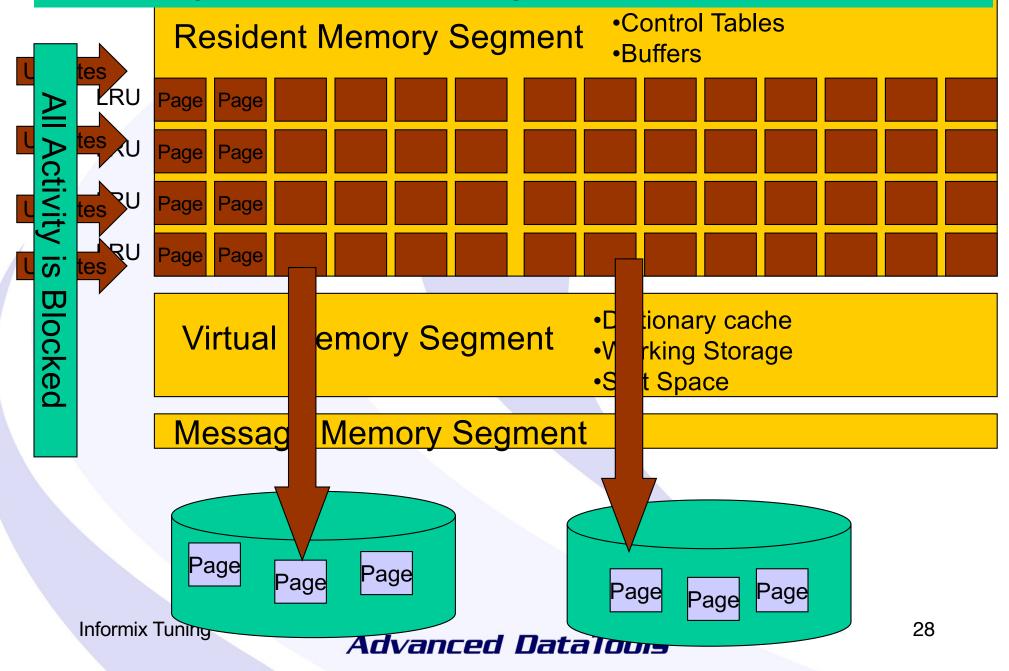

#### 3 - Reduce Buffer Turnover Informix Memory Best Practices


- How much memory is available on the machine?
- How much is used by the Operating System and other applications?
- How much will be assigned to Informix?
- DO NOT allow the machine to Swap memory to disk as this will SLOW everything down

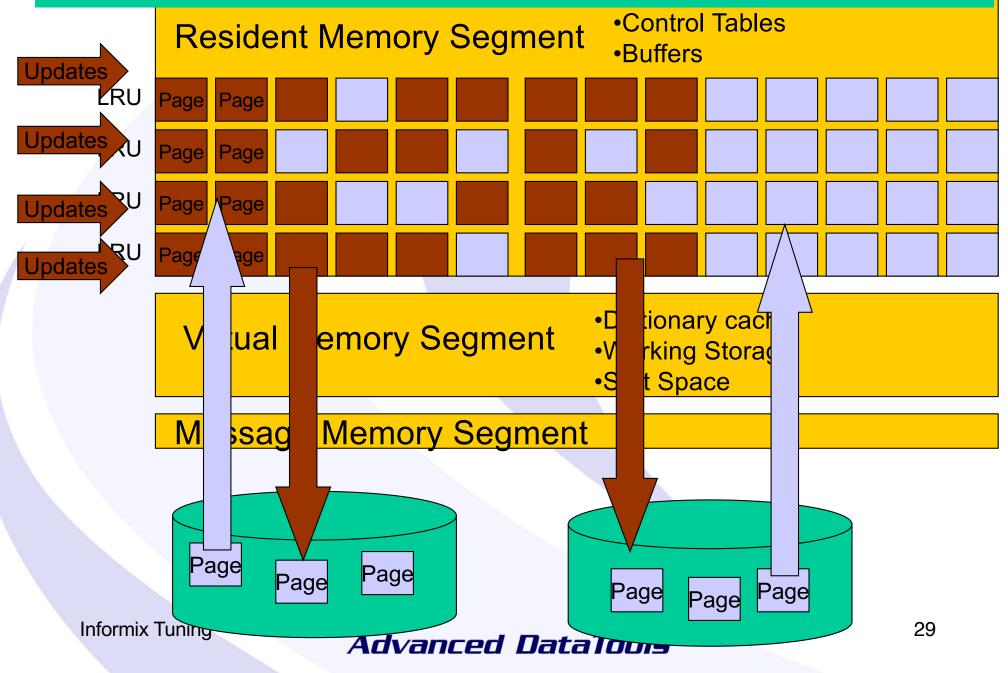
Informix Tuning


#### Page Gets Read into Memory by a Select

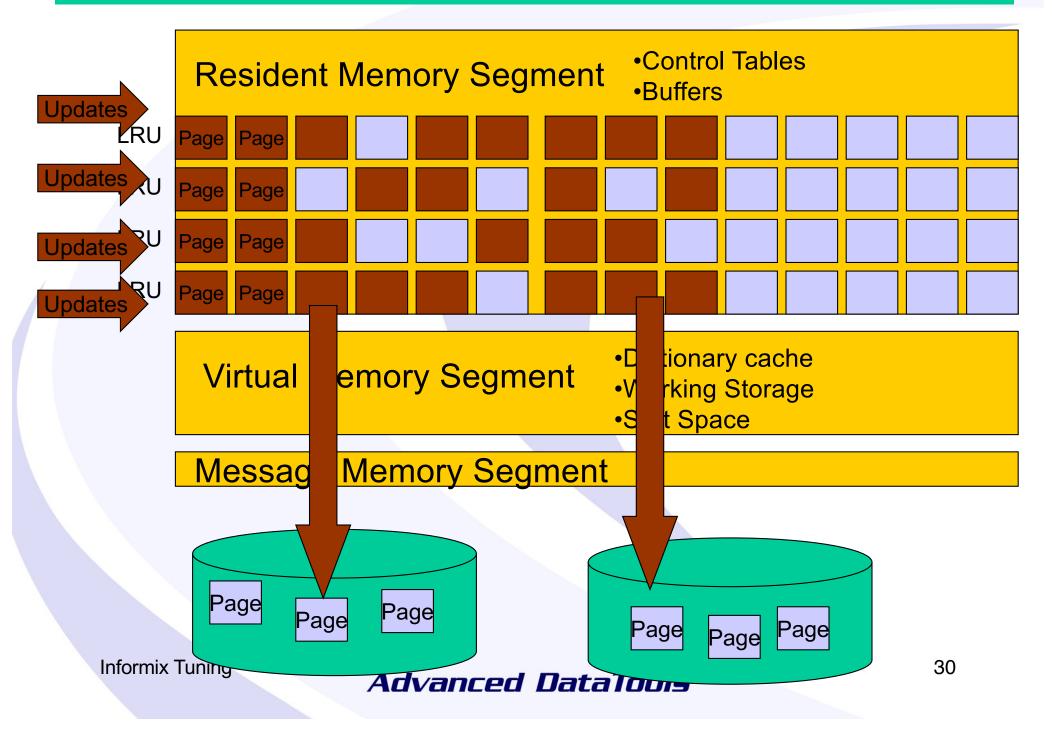




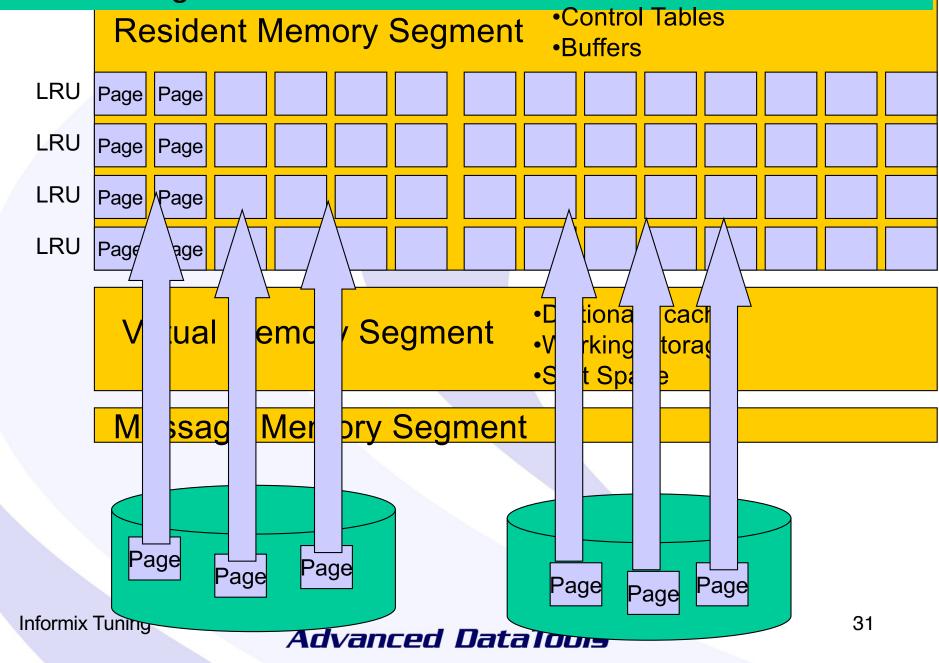




# LRU Queues manage writing data to disk in the background when there is idle time, based on LRU\_MAX\_DIRTY and LRU\_MIN\_DIRTY ONCONFIG values.




# When all buffers are Dirty, the server must STOP all processing and perform a Foreground Write.




# When a buffer is written to disk, it is marked as clean and may be discarded if needed.



#### Checkpoint writes all Dirty Buffers to Disk.



# After a Checkpoint, all Buffers are clean and the cycle starts over again.



# BUFFERPOOL Best Practices

- Biggest performance gain is to have enough Buffers to hold as many pages as possible in Memory
- More Buffers = the better and faster your database will perform
- Goal is to put all the active data into Memory
- Goal is to prevent high Memory Buffers Turnover (Art Kagel's rule – less than 8 times and hour)

Informix Tuning

# Monitoring BUFFERPOOL Turnover

| Module: @(#)buff_btr_ratio.sql 2.0 Date: 2013/04/10                 |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| — Author: Lester Knutsen Email: lester@advancedatatools.com         |  |  |  |  |  |  |  |  |  |
| Advanced DataTools Corporation                                      |  |  |  |  |  |  |  |  |  |
| — Discription: Display Buffer Turnovers per hour                    |  |  |  |  |  |  |  |  |  |
| Based on Art Kagels performance tuning tip on monitoring            |  |  |  |  |  |  |  |  |  |
| how much buffer churn your server has.                              |  |  |  |  |  |  |  |  |  |
| Goal is BTR of less then 7 times per hour                           |  |  |  |  |  |  |  |  |  |
| Tested with Informix 11.70 and Informix 12.10                       |  |  |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |  |  |
| select                                                              |  |  |  |  |  |  |  |  |  |
| bufsize,                                                            |  |  |  |  |  |  |  |  |  |
| pagreads,                                                           |  |  |  |  |  |  |  |  |  |
| bufwrites,                                                          |  |  |  |  |  |  |  |  |  |
| nbuffs,                                                             |  |  |  |  |  |  |  |  |  |
| ((( pagreads + bufwrites ) /nbuffs ) /                              |  |  |  |  |  |  |  |  |  |
| <pre>( select (ROUND ((( sh_curtime - sh_pfclrtime)/60)/60) )</pre> |  |  |  |  |  |  |  |  |  |
| from sysshmvals ) ) BTR                                             |  |  |  |  |  |  |  |  |  |
| <pre>from sysbufpool;</pre>                                         |  |  |  |  |  |  |  |  |  |

Informix Tuning

#### 4 - One SHMVIRT Segment SHMVIRTSIZE Best Practices

- Controls the size of the Informix Virtual Memory Workspace, which can grow if needed.
- Best practice is to set it large enough so it does not need to grow.
  - Monitor with onstat –g seg

Informix Tuning

# Informix Shared Memory onstat –g seg

informix@train6:~ train6 > onstat -g seg
IBM Informix Dynamic Server Version 12.10.FC4 -- On-Line -- Up 21:28:30 -- 774588 Kbytes
Segment Summary:

| id       | key      | addr     | size      | ovhd   | class | blkused | blkfree           |
|----------|----------|----------|-----------|--------|-------|---------|-------------------|
| 9109513  | 525c4801 | 4400000  | 4902912   | 490568 | R     | 1197    | 0                 |
| 9142282  | 525c4802 | 444ad000 | 33439744  | 393384 | V     | 8155    | 9                 |
| 9175051  | 525c4803 | 46491000 | 562749440 | 1      | В     | 137390  | 0                 |
| 9207820  | 525c4804 | 67d3f000 | 166359040 | 1      | В     | 40615   | 0                 |
| 9240589  | 525c4805 | 71be6000 | 561152    | 7848   | М     | 136     | 1                 |
| 9469966  | 525c4806 | 71c6f000 | 8388608   | 99720  | V     | 2045    | 3                 |
| 9764879  | 525c4807 | 7246f000 | 8388608   | 99720  | V     | 1752    | <mark>296</mark>  |
| 11829264 | 525c4808 | 72c6f000 | 8388608   | 99720  | V     | 25      | <mark>2023</mark> |
| Total:   | -        | -        | 793178112 | -      | -     | 191315  | 2332              |

Informix Tuning

### **Additional Memory Setting**

- RESIDENT Controls whether shared memory is resident. Acceptable values are:
  - 0 off (default)
  - 1 lock the resident segment only
  - n lock the resident segment and the next n-1 virtual segments, where n < 100</li>
  - -1 lock all resident and virtual segments
- SHMADD The size, in KB, of additional virtual shared memory segments

### 5 - One LOCKS Segment

- LOCKS in ONCONFIG = the number of LOCKS when Informix starts
- Determines the amount of Memory initially set for LOCKS
- Server will dynamically add as needed
- Dynamically adding LOCKS can cause a performance degradation

### **LOCKS Memory Settings**

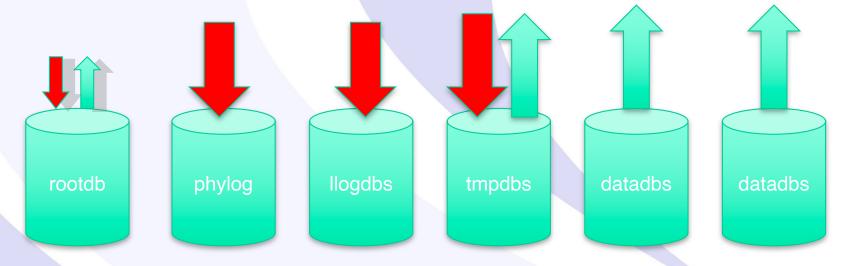
To monitor, look at the last line of:
 – onstat –k

| Locks       |                  |                  |                     |       |         |       |
|-------------|------------------|------------------|---------------------|-------|---------|-------|
| address     | wtlist           | owner            | lklist              | type  | tblsnum | rowid |
| 44199028    | 0                | 44cd4668         | 0                   | S     | 100002  | 204   |
| 4423f068    | 0                | 44cd4f28         | 0                   | S     | 100002  | 204   |
| 442e50a8    | 0                | 44cd57e8         | 0                   | S     | 100002  | 204   |
| 442e5130    | 0                | 44cd57e8         | 442e50a8            | HDR+S | 100002  | 201   |
| 4438b0e8    | 0                | 44cd60a8         | 0                   | HDR+S | 100002  | 204   |
| 5 active, 8 | 0000 total, 1638 | 4 hash buckets 2 | lock table overflow | IS    |         |       |

This shows 2 lock table overflows
This system requires 80,000 locks

Informix Tuning

### **LOCK Best Practices**


- LOCK Table Overflows will slow performance and should be avoided
- LOCK Table Overflows are a major contributor to SHMVIRT Memory additions
- Set your LOCK setting to a value that is the largest number required

# 6 - Three or more Temp Dbspaces

- Most Disk Writes will be to Temp Space
- Create at least three Temp Dbspaces and Informix will automatically load balance between the temp dbspaces
- Example:
  - -DBSPACETEMP tmp1dbs:tmp2dbs:tmp3dbs

#### Database Disk I/O

- Most Reads are from Data and Tables
- Writes will be split between Physical Log, Logical Log, Temp, and Data



Informix Disk Space

### **Improving Sorts**

- Avoiding Sorts
  - Improve indexes on tables
  - However, sorts consume less resources than reading the index when the number of index pages is large
- Narrow columns require less work to sort
- Reduce the data to sort only select the rows you need

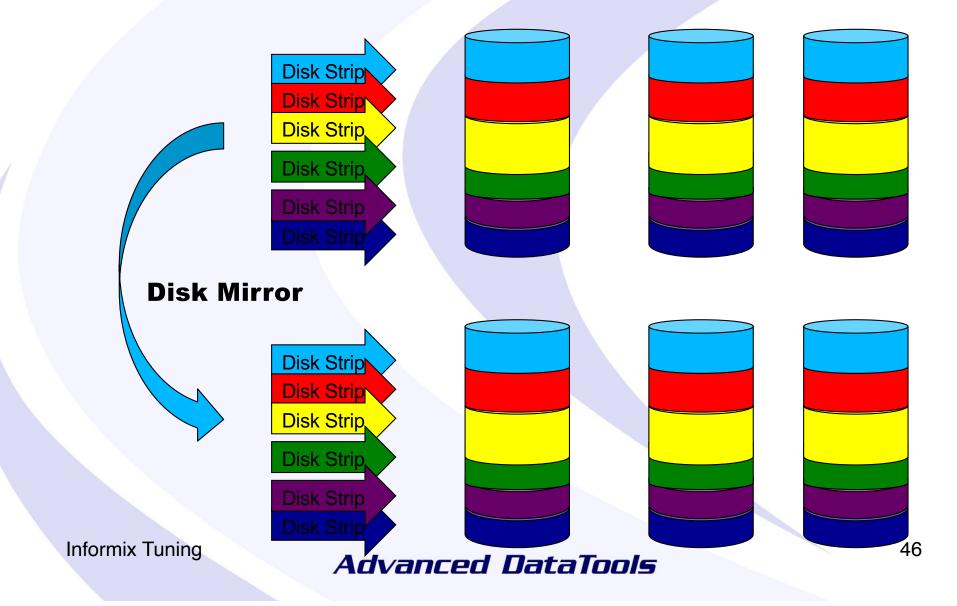
Informix Tuning

### **Memory Required by Sorts**

- The default memory used for a sort is 256KB
- If the sort takes more than 256KB of memory, the sort will go to disk
- ONCONFIG parameter:
  - DS\_NONPDQ\_QUERY\_MEM
    - The amount of memory given to sorts who have a PDQ of 0
    - Minimum Value 128KB
    - Maximum Value 25% of DS\_TOTAL MEMORY
    - onmode -wf DS\_NONPDQ\_QUERY\_MEM=1024

Informix Tuning

### **Disk Used by Sorts**


- DBSPACETEMP as defined in Onconfig
- Rootdbs
  - When the database is logged and DBSPACETEMP is a non-logged dbspace
  - When no DBSPACETEMP is defined
- /tmp
  - When PSORT\_DBTEMP or DBSPACETEMP is not set
- PSORT\_DBTEMP
  - Best performance for sorts several file systems

Informix Tuning

# 7 - Balance Disk IO LRUS, KAIO or DIRECT\_IO

- More disks are better
- Spread the disk I/O across as many disks as possible
- RAID 10 Stripes and mirrors the data across many disks
- Test DIRECT\_IO

### **RAID 10 Configuration**



# Move Physical and Logical Logs to Separate DBspaces

- Most disk writes will be to the Physical and Logical Logs
- Move the Physical and Logical Logs to separate dbspaces
- Separate disks are better!

### **KAIO and RAW Disks**

- Using RAW Disks can be up to 25% faster than using Cooked Disks
- If your operating system supports it, turn on KAIO
- See the Informix Release Notes for your machine on how to set up KAIO
- Test DIRECTIO options

### **AIO Oninit Best Practices**

#### Default is

- AUTO\_AIOVPS 1 enable automatically adding AIO VPs as needed
- This can lead to *too many* AIO VPs writing to the same disk system
- Recommended
  - AUTO\_AIOVPS 0
  - VPCLASS aio,num=<number of oninits you need to write to disk>

### **AIO Oninit Best Practices**

- How many AIO Class Oninits do you need? Test, Test, Test...
  - With KAIO or DIRECT\_IO on only need 2 AIO oninits
  - With KAIO off (default), it depends on how many processes can write to a disk at the same time
  - Never need more than twice the number of active chunks
  - Most disks can handle up to 8 processes writing

Informix Tuning

# LRU Writes – Key To Reducing Checkpoints

- LRU Writes are background writes with low overhead
- To reduce the time of a Checkpoint increase your LRU Writes
- Lower the settings for:
  - Irus=<Number of LRU QUEUES>,
  - Iru\_max\_dirty=<Percent dirty to START cleaning>
  - Iru\_min\_dirty=<Percent dirty to STOP cleaning>

Informix Tuning

#### **LRU Best Practices**

- Enable AUTO\_LRU\_TUNING for turnkey or embedded systems
- Disable AUTO\_LRU\_TUNING for high performance systems where you do not want CHECKPOINTS to write a huge amount of data to disk and slow everything down

# 8 - Use Your CPUVPs

#### **CPU Terms**

- Socket = One Chip or Processor
- Cores per Socket = How many cores run on a chip? A core only runs one process at a time.
- Hyper-Threads or SMT threads per core = Many cores have the ability to run multiple threads. No matter how many threads run on a core, only one thread can run at a time on a core. Hyper-Threads will appear as additional Virtual Cores.
- Chip speed is measured in gigahertz (GHz); this is the speed of a single core of your processor.
- PVU IBM Processor Value Unit = A unit of measure used to differentiate licensing of software

Informix Tuning

### **CPU Terms**

- Example: 2 Sockets with 5 Cores and 2 Hyper-Threads per Core = 10 Cores and 20 Virtual Cores
- 20 Virtual Cores can ONLY run 10 processes at the same time

Informix Tuning

### **Informix CPU Best Practices**

- How many Cores will be allocated for Informix? What else is running on the machine?
- Traditional best practice is number of physical CPU Cores minus 1
- Current CPU Cores are fast enough to handle 2-3 oninits per Core or 1 oninit per 1000 MHz

### **CPU Usage Best Practices**

- How busy are your CPUs?
- Tools to monitor:
  - sar -u, vmstat, mpstat, top, prstat
- Performance Guideline for Average CPU Usage:
  - < 30 % Good
  - 30-60% Fair
  - >60% Poor
- Save 60% of your CPU usage to handle Workload Spikes or you may not be able to handle busy loads

Informix Tuning

# Hyper-Threads or SMT Threads Best Practices

- Test, Test and Test again; don't assume that more Hyper-Threads or SMT threads are better. Your workload will determine what is best.
- AIX Try 2 SMT threads per Core on Power6 and Power7, 4 SMT on Power8
- Intel Try 2 Oninits per Core instead of 2 Hyper-Threads or 1 Oninit per Hyper-Thread

Informix Tuning

# Oninit Process onstat –g sch

informix@train6:~ train6 > onstat -g sch

IBM Informix Dynamic Server Version 12.10.FC6 -- On-Line -- Up 00:02:12 -- 766404 Kbytes VP Scheduler Statistics:

| vp | pid   | class | semops | busy waits | spins/wait | bsy lspins |
|----|-------|-------|--------|------------|------------|------------|
| 1  | 22472 | cpu   | 141    | 0          | 0          | 0          |
| 2  | 22473 | adm   | 0      | 0          | 0          | 0          |
| 3  | 22474 | lio   | 4115   | 0          | 0          | 0          |
| 4  | 22475 | pio   | 30     | 0          | 0          | 0          |
| 5  | 22476 | aio   | 7453   | 0          | 0          | 0          |
| 6  | 22477 | msc   | 5      | 0          | 0          | 0          |
| 7  | 22478 | fifo  | 2      | 0          | 0          | 0          |
| 8  | 22479 | SOC   | 2      | 0          | 0          | 0          |
| 9  | 22480 | aio   | 2890   | 0          | 0          | 0          |
| 10 | 22481 | aio   | 187    | 0          | 0          | 0          |
| 11 | 22482 | aio   | 113    | 0          | 0          | 0          |
| 12 | 22483 | aio   | 55     | 0          | 0          | 0          |
| 13 | 22484 | aio   | 58     | 0          | 0          | 0          |
| 14 | 22485 | aio   | 41     | 0          | 0          | 0          |
| 15 | 22486 | aio   | 32     | 0          | 0          | 0          |
| 16 | 22487 | aio   | 29     | 0          | 0          | 0          |
| 17 | 22489 | aio   | 22     | 0          | 0          | 0          |

Informix Tuning

# Oninit Process Automatically Started

- Started Automatically
  - PIO Handles physical log file when cooked disk space is used
  - LIO Handles logical log file when cooked disk space is used
  - FIFO Performs FIFO operations
  - ADM Executes administrative threads
  - MSC Handles request for system calls
- Started when Auditing is on
  - ADT Executes auditing threads
- Started when UDRs are called
  - Java
  - User Defined Functions

Informix Tuning

# Oninit Process Controlled by VPCLASS

- ONCONFIG VPCLASS Setting
  - CPU Executes all user and session threads and some system threads
  - AIO Handles disk I/O

### **CPU Oninit Configuration**

- VPCLASS CPU Configure the number of Oninit CPU VPs to start for Informix
  - VPCLASS cpu,num=<number> [,max=<max number cpu>]
     [,aff=<single CPU number> I <start cpu>-<end cpu> I ( <start cpu>-<end cpu>/<skip amount> ) ] ] [,noage]
- Examples for 8 Core machine:
  - VPCLASS cpu,num=4,noage
  - VPCLASS cpu,num=8,noage
  - VPCLASS cpu,num=8,aff=0,noage
  - VPCLASS cpu,num=8,aff=1-4,noage

Informix Tuning

# Additional CPU Best Practices

- Set MULTIPROCESSOR to 1 (Almost all machines today are multiprocessor)
- Set SINGLE\_CPU\_VP to 0 (Allows you to run more Oninits of CPU class as needed)
- Set NOAGE if your OS supports it

# Additional CPU Best Practices

- Set VP\_MEMORY\_CACHE\_KB <size in KB for private cache for each CPU VP>
- Format is: <size>[,DYNAMICISTATIC] Acceptable values for <size> are: 0 (disable) or 800 through 40% of the value of SHMTOTAL
- Example:
  - VP\_MEMORY\_CACHE\_KB 4096

Informix Tuning

### 9 - Row Level Locking

- Informix defaults to creating tables with Page Level Locking
- For OLTP systems, make sure you are using ROW Level Locking
- Find Tables with Page Level Locking

select tabname, locklevel
from systables
where tabid > 99
and locklevel = "P"
and tabtype = "T"

Informix Tuning

**10 - Update Statistics** Why is Update Statistics important?

- Update Statistics collects metrics to enable the server to run your SQL faster
- One of the most important tasks for a DBA
- Informix has Automated Update Statistics built into the server, but you still need to monitor it

#### When Did AUS Last Run?

```
-- ## Module: @(#)aus_last_run.sql 2.0
                                       Date: 01/01/2018
-- ## Author: Lester Knutsen Email: lester@advancedatatools.com
           Advanced DataTools Corporation
-- ##
-- ## Show when Auto Update Status (AUS) was last run for a server
-- unload to "aus_last_run.uld"
select
      substr(b.name,1,20) as db,
      substr(c.tabname,1,20) as table,
      aus_cmd_type as level,
      aus_cmd_time as when
from
      sysadmin:aus_command a,
      sysmaster:sysdatabases b,
      sysmaster:systabnames c
      a.aus_cmd_dbs_partnum = b.partnum
where
and a.aus_cmd_partnum = c.partnum
and b.name not matches "sys*"
and c.tabname not matches "sys*"
order by aus_cmd_id;
```

Informix Tuning

### When Did AUS Last Run?

|            | benchmark3@train1 |       | - Press CTRL-W for Hel |
|------------|-------------------|-------|------------------------|
| db         | table             | level | when                   |
| benchmark1 | state             | 1     | 2019-09-24 01:01:16    |
| benchmark1 | state             | Н     | 2019-09-24 01:01:16    |
| benchmark1 | benchmark         | 1     | 2019-09-24 01:01:16    |
| benchmark1 | benchmark         | Н     | 2019-09-24 01:01:16    |
| benchmark2 | state             | 1     | 2019-09-24 01:01:21    |
| benchmark2 | state             | Н     | 2019-09-24 01:01:21    |
| benchmark2 | customer          | 1     | 2019-09-24 01:01:21    |
| benchmark2 | customer          | Н     | 2019-09-24 01:01:21    |
| benchmark2 | product           | 1     | 2019-09-24 01:01:21    |
| benchmark2 | product           | Н     | 2019-09-24 01:01:21    |
| benchmark2 | bills             | 1     | 2019-09-24 01:01:21    |
| benchmark2 | bills             | Н     | 2019-09-24 01:01:21    |

# Update Stats Info by Database

| ####    | ***************************************                    |
|---------|------------------------------------------------------------|
| —— ## M | odule: @(#)updstats_info.sql 2.0 Date: 01/01/2018          |
| —— ## A | uthor: Lester Knutsen Email: lester@advancedatatools.com   |
| ##      | Advanced DataTools Corporation                             |
| ####    | ***************************************                    |
| ## S    | how when update status for last run for a table or columns |
| ## i    | n the current database                                     |
|         |                                                            |
| select  | t.tabname as tabname,                                      |
|         | t.ustlowts as low_update,                                  |
|         | c.colname as column,                                       |
|         | d.constructed as upddate,                                  |
|         | d.mode as mode,                                            |
|         | d.constr_time as updtime,                                  |
|         | d.ustbuildduration as updduration,                         |
|         | max(d.seqno) as maxseqno                                   |
|         | systables t, outer ( sysdistrib d, syscolumns c )          |
|         | t.tabid > 99                                               |
|         | t.tabtype = "T"                                            |
|         | t.tabid = d.tabid                                          |
|         | d.tabid = c.tabid                                          |
|         | d.colno = c.colno                                          |
|         | y 1,2,3,4,5,6,7,8,9, 10                                    |
| order b | y 1, 3                                                     |

Informix Tuning

## Update Stats Info by Database

| tabname       | bills                     |
|---------------|---------------------------|
| low_update    | 2022-02-28 12:56:52.00000 |
| column        | bill_number               |
| upddate       | 02/28/2022                |
| mode          | Н                         |
| updtime       | 2022-02-28 12:56:52.00000 |
| updduration   | 0:00:00.00000             |
| maxseqno      | 5                         |
| The Alexandra |                           |
| tabname       | customer                  |
| low_update    |                           |
| column        | customer_number           |
| upddate       | 02/12/2022                |
| mode          | Н                         |
| updtime       | 2022-02-12 01:11:02.00000 |
| updduration   | 0:00:00.02167             |
| maxseqno      | 9                         |
| tabname       | product                   |
| low_update    | 2022-02-12 01:11:02.00000 |
| column        | product_number            |
| upddate       | 02/12/2022                |
| mode          | Η                         |
| updtime       | 2022-02-12 01:11:02.00000 |
| updduration   | 0:00:00.00001             |
| maxseqno      | 1                         |
| max sequio    |                           |

Informix Tuning

# Document ONCONFIG Changes - onconfig\_diff

• See changes in your ONCONFIG file:

usage: onconfig\_diff [-d] | [-c -f file\_name\_1 -s file\_name\_2]

- -d compare current onconfig to defaults
- -c compare file to another file
  - file name
- -s second file name
- Compare to Another ONCONFIG:

onconfig\_diff -c -f \$INFORMIXDIR/etc/onconfig.std -s \$INFORMIXDIR/etc/\$ONCONFIG

Compare to Defaults

-f

onconfig\_diff -d

Informix Tuning

### **Additional Information**

#### Configuring a New Informix Server (ONCONFIG)

https://advancedatatools.com/webcasts/informix-tutorial-configuring-a-new-informix-server/

#### Managing Informix Disk Space

- https://advancedatatools.com/webcasts/informix-tutorial-managing-informix-disk-space/

#### Informix Database Indexes

 https://advancedatatools.com/webcasts/informix-webcast-2019-database-indexes-best-practices-for-informixdbas/

#### Informix Update Statistics

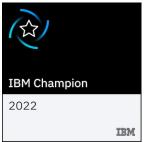
 https://advancedatatools.com/webcasts/informix-webcast-2019-informix-update-statistics-best-practices-forinformix-dbas/

#### Optimizing the Operating System

 https://advancedatatools.com/webcasts/informix-webcast-2018-optimizing-the-operating-system-for-the-bestinformix-database-performance/

Informix Tuning

### Informix DBA Training From the Informix IBM Champions




> Informix for Database Administrators Training - May 9-12, 2022

Advanced Informix Performance Tuning - May 23-26, 2022 More information and registration at:

https://advancedatatools.com/training/

- Instructor-led online classes by Zoom
- Four days of hands-on Informix experience
- Separate AWS Informix server for exercises and labs for each student
- Participate in Q&A and collaborative class discussions
- Taught by Lester Knutsen, IBM Informix Lifetime Champion, with over 40 years of Informix experience



#### Informix 4GL for Developers Free Training coming in April



Informix 4GL for Developers Course is for programmers developing and debugging Informix 4GL code. The FREE course previews the first eight lessons of the entire 18 lesson course.

- Self-paced Online course
- Online Video instruction lectures
- Use your own server for the labs
- Participate in Q&A and collaborative class online discussions
- Developed by Lester Knutsen, IBM Informix Lifetime Champion, with over 40 years of Informix experience

#### **Contact info@advancedatatools.com if you are interested!**

#### **Questions?**



**Please ask your questions in the Chat!** 

#### Thank You Advanced DataTools Corporation



For more information:

#### Lester@advancedatatools.com https://www.advancedatatools.com

# **Thank You**

#### Informix Tech Talks by the IIUG on YouTube

We have launched a new channel on YouTube for Informix Users! Please subscribe to our channel on YouTube to stay informed. This will be a place for Informix how-to videos.



#### Subscribe at:

https://www.youtube.com/c/InformixTechTalksbytheIIUG

International Informix User Group

We speak Informix



# Coming in April 2022

#### All Presentations from IIUG World 2021 will be available on Informix Tech Talks YouTube



Subscribe at:

https://www.youtube.com/c/InformixTechTalksbytheIIUG

International Informix User Group

We speak Informix