
Advanced DataTools
Webcast

from the IBM Informix Champions

Database Indexes – Best
Practices for Informix DBAs

by Lester Knutsen
Thursday, August 29, 2019

at 2:00 pm EDT
1

Lester Knutsen

2

Lester Knutsen is President of Advanced DataTools
Corporation, and has been building large data
warehouse and business systems using Informix
Database software since 1983. Lester focuses on
large database performance tuning, training, and
consulting. Lester is a member of the IBM Gold
Consultant program and was presented with one of
the Inaugural IBM Information Champion awards by
IBM. Lester was one of the founders of the
International Informix Users Group and the
Washington Area Informix User Group.

lester@advancedatatools.com
www.advancedatatools.com

703-256-0267 x102

Webcast Guidelines

• The Webcast is being recorded. The
Webcast replay and slides will be
available in a few days.

• Please Mute your line. Background
sounds will distract everyone.

• Use the Chat Button in the upper right
to ask questions.

3

Database Indexes
Best Practices for Informix DBAs

Ø - What is an index?
Ø - How do you improve performance with an index?
Ø - What is the performance cost of an index?
Ø - How do you speed up creating indexes?
Ø - How do locks affect indexes?
Ø - How to monitor an index to see if it is needed or used?
Ø - When is an index unnecessary?
Ø - When is an index needed or required?
Ø - What is a clustered index?
Ø - How do you maintain indexes for peak efficiency?
Ø - What is a functional index?

4

Database Indexes

• Indexes are a data structure that improves
the speed of data retrieval on a table

• Indexes…cost additional writes and storage
space…

• Indexes are used to quickly locate data
without having to search every row in a table

– Source: https://en.wikipedia.org/wiki/Database_index

5

Demo:
Performance with an Index

Example – five update statements like
this:

update benchmark set price = price +
(select price from zip where benchmark.zip = zip.zip)

where id between 1 and 50000;

6

No Index on Zip Index on Zip
Real Time 9m38.010s 0m2.503s
Number Rows Scanned 8,778,469,012 709,542
SQL Estimated Costs 1,304,497 433,074

Types of Informix Indexes

• B-Tree Index – most common – used for all
built-in data types

• Forest of Trees Index – B-Tree index with
multiple root nodes

• R-Tree Index – Used for Spatial and two- or
three- dimensional data

• Functional Index – provided by DataBlade
module or indexes based on User Defined
Functions

7

What is a Sequential Scan?

• Sequential Scan is how a table is read
without an index

• Starts at the first row of the table and
reads every row

• Reads in the order pages are stored on
disk (random order)

• May be best performance when reading
more than 20-25% of the rows in a table

8

What is a B-tree Index?

• A sorted hierarchy structure that
contains pointers to the rows on disk to
speed up access

• Like an index in a book, look up a term
and it will point you directly to the page
number

9

Structure of a B-Index

10

Pointer to next index
page

Key
values

Address of rows on disk

Key
values

Address of rows on disk

Key
values

Address of rows on disk

Key
values

Address of rows on disk

Key
values

Pointer to next index
page

Key
values

Pointer to next index
page

Key
values

Pointer to next index
page

Key
values

Pointer to next index
page

Key
values Root Page

Branch Pages

Leaf Pages

Structure of a B-Index
• Root page – points to branch pages
• Levels of branch pages – point to other branch pages until the

bottom level is reached; this is a leaf page.
• Leaf pages point to where the row is located on disk (row id or

partition and row id)
• The levels and size of an index depend on:

– the number of unique keys in an index
– the number of index entries that each page can hold
– the size of the columns being indexed

• Index leaf pages contain:
– Sorted column values – the key
– Pointer to the data row – the address of the row

• A unique index contains one index entry for every row in the
table.

11

Estimate Size of an Index

• Estimating conventional index pages:
– https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_365.htm

• Formula for estimating index size = (((
Column Size + 4 bytes) * percent unique) +
row pointer + 4 bytes) * number of rows
– percent unique is how unique the index is where 1

is unique index and .5 is 50% duplicates
– Row pointer is 5 for non-partitioned tables and 9

for partitioned tables

12

Create and Drop Syntax

• Create index index_name on table
(column_list);
– create index if not exists

idx_bills_customer_number on bills
(customer_number);

• Drop index index_name;
– drop index if exists

idx_bills_customer_number;

13

Create and Drop Indexes
Online – No Exclusive Locks
• Create index index_name on table

(column_list) online;
– create index if not exists

idx_bills_customer_number on bills
(customer_number) online;

• Drop index index_name online;
– drop index if exists

idx_bills_customer_number online;

14

Example – Performance of a
Scan vs Index

15

Performance of an
Index vs Scans

• Example – 100,000 row table with 4
index levels

• A sequential scan of the table will take
100,000 reads (1 read per row)

• An Index will take 4 reads for each level
and 1 read for the row (5 reads per row)

16

Performance of an
Index vs Scans

• How many Index I/O reads are required
to:
– Read 1 row – 5 reads
– Read 10,000 rows – 50,000 reads
– Read 20,000 rows – 100,000 reads
– Read 50,000 rows – 250,000 reads

• At what point is a Scan less I/O reads
than using an Index?

17

Performance Costs of an
Index - Selects

• Select a row using an index – will require
reading several index levels to get to the data
row page

18

Performance Costs of an
Index - Inserts

• Insert a row and new index entries must be
added to the index

• If space does not exist on existing pages,
new index pages and levels may need to be
created

• Index Pages Splits can be expensive
• Look at Fill Factor when creating an Index
• Performance can be improved for large loads

by disabling Indexes and then rebuilding the
indexes after the load

19

Performance Costs of an
Index - Deletes

• Delete a row and all index entries that point to
the row must be deleted

• First the index entries are marked for deletion
• Next, in the background, the BTSCANNER

goes through and deletes the entries based
on ONCONFIG settings
– BTSCANNER num=1,threshold=5000,rangesize=-

1,alice=6,compression=default
• This may require re-writing several index

pages

20

Performance Costs of an
Index - Updates

• Update a row and any columns that change
and have index entries that point to the row
will need to be updated

• An update is performed as a delete from the
old index page, then an insert into the new
page
– Cost of a delete
– Cost of an insert

21

Performance Costs of an
Index - Summary

• When a row is inserted or deleted at random,
allow three to four added page I/O operations
per index.

• When a row is updated, allow six to eight
page I/O operations for each index that
applies to an altered column.

• When a transaction is rolled back, all this
work must be undone. For this reason, rolling
back a transaction can take a long time.

22

How Does an Index Affect
Locks?

• Lock on a row will lock the related indexes
• A table with 5 indexes will generate 6 locks
• Insert, update, or delete on a row will

automatically create a lock on the index key
• Tables with page-level locking will hold locks

on the related index page

23

Indexes that are NOT
Required Degrade

Performance
• More I/O for inserts, deletes, and

updates
• Unnecessary locks
• Drop all unnecessary indexes

24

When is an Index Required?

• Enforce unique columns in a table
• Primary keys
• Foreign keys

25

When is an Index Required?

• May improve performance of Joins
• May improve performance of Queries
• May improve performance of Sorts

26

When are Indexes Helpful?

• Columns used in joins
• Columns used in filter expressions (SQL

where clause)
• Columns used for sorts, ordering, or

grouping

27

When is an Index
Unnecessary?

• On columns not used in:
– Where statements
– Order by statements
– Join statements
– Primary Keys or Constraints

28

Auto Index – System
Generated Temp Indexes

• The Informix Server Optimizer may decide to
automatically create a temporary index to
execute a SQL statement

• When the SQL statement is complete the
index is dropped

• Review SQL Explain Plans
2) informix.product: AUTOINDEX PATH

Filters:
Table Scan Filters: informix.product.product_number IN (1 , 2)

(1) Index Name: (Auto Index)
Index Keys: product_code

29

Auto Index in SQL Explain
Plan

30

System Generated Indexes

• Constraints will create a system
generated index if one does not already
exist

• System generated index names begin
with a space

31

System Generated Indexes

32

User Created

System Generated

Best Practices for Creating
Constraints

• Create the table
• Load the data
• Create the indexes that the constraints

will require
• Alter table to add constraints, it will use

the existing indexes

33

Difference of Unique Index
vs Unique Constraint

• For Logged tables, unique indexes are
checked on every row

• For Logged tables, unique constraints
are checked at the end of the SQL
statement or on commit

34

Foreign Key Constraints
Without an Index

• Very useful for large Fact Tables which
reference small Dimension Tables
where Foreign Key Constraint indexes
create additional overhead

• Create the indexes that the constraints
will require with the index Disabled

• Alter table to add constraints; it will use
the existing Disabled index

35

Foreign Key Constraints
Without an Index

36

Best Practices for Loading
Large Tables With Indexes

• Disable the indexes
• Set the table to RAW
• Load the data
• Set the table to STANDARD
• Enable the indexes and this will rebuild

the indexes

37

Clustered Indexes

• Perform one-time sorts that reorder
physical data rows to match index order

• Requires enough free space to build a
copy of the table during the process

• Locks table during rebuild process
• Syntax:

– alter index index_name to cluster
• Maintenance operation

38

Composite Indexes

• Order of columns is important
– Example: Which indexes are better?

• (first_name, last_name, company)
• (company, first_name, last_name)
• (company, last_name, first_name)
• (company)
• (first_name, last_name)

• Avoid unneeded redundant indexes

39

Composite Indexes

• Order of columns is important
– Example: Which indexes are better?

• (first_name, last_name, company)
• (company, first_name, last_name)
• (company, last_name, first_name)
• (company)
• (first_name, last_name)
• Add index (last_name, company)

40

Index Fill Factor

• What percent of an index page is filled
when the index is first created?

• Default is 90
• Use 100 for index pages that never

grow
• Use 50 for high-growth tables

– Create index index_name on table X (col1)
fillfactor 50;

41

What is a Functional Index?

• A functional index stores the result of a
function on a column in an index
– Create index idx_zone on buildings

(area(length,width));
– Create index idx_last_name_upper on

customers (toupper (last_name));

42

Functional Index

43

What is a Forest of Trees
Index?

• A forest of trees index is like a B-tree index, but it has
multiple root nodes and potentially fewer levels

• Multiple root nodes can alleviate root node
contention, because more concurrent users can
access the index

• A forest of trees index can also improve the
performance of a query by reducing the number of
levels involved in read operations

44

What is a Forest of Trees
Index?

45

What is the Best DBspace
Page Size for an Index?

• For large tables:
– Create a DBspace with 16 KB page size
– Create a separate BUFFER pool for the 16

KB DBspaces

46

Index Partitioning
• Locate indexes in separate dbspace

from data
• Partition indexes in the same way the

table is partitioned
– by expression, list, or interval range
– this enables detaching table partitions

when the indexes match the table
• Can partition indexes using a different

expression than the data, but…
47

Automatic Partition by
Interval with Partitioned Index

48

Attached vs Detached
Indexes

• Default in version 7.X – Attached
Indexes
– index pages are stored within the same

tablespace as data pages
• Default in version 9.X and greater -

Detached Indexes
– index pages are stored in separate

tablespace from the data pages
49

New Index Features in
Informix 14

• When a varchar column length is being
increased, the index is not rebuilt

• Rename system generated indexes
– rename index 104_8 to idx_bills_pk;

• Drop constraint and maintain index
• Rename system generated constraints

– rename constraint xyz to mytab_pk_const;

50

How to Speed up Index
Creation?

• Creating indexes requires CPU threads,
memory, and temporary space

• Use PDQ Priority
• Have at least three temporary dbspaces

with enough space to rebuild the index
• Use PSORT_NPROCS and

PSORT_DBTEMP

51

How Do You Maintain
Indexes for Peak Efficiency?
• To rebuild Indexes

– Drop Index
– Create the Index
– See section on speeding up index builds

• DO NOT use kill 9 on a user
session, or the server, as this
may leave indexes in
inconsistent state

52

BTSCANNER
• The B-Tree Scanner threads remove deleted index

entries and rebalance the index nodes
• ONCONFIG Value

– BTSCANNER num=1,threshold=5000,rangesize=-1,alice=6,compression=default
– Num is number of threads to run
– Threshold is minimum number of deleted keys to prioritize for cleaning
– Rangesize is mode of scanning where -1 is alice mode and 100 is leaf scan mode
– Alice controls index cleaning where

• 0 = off
• 1 = Uses 8 bytes
• 2 = Use 16 bytes
• 3-12 = Sets the start memory for cleaning and may be automatically adjusted (default is 6)

– Compression is the level that partially-used pages may be merged
• Low
• Med or default
• High

53

Starting Additional B-Tree
Scanner Threads

• Onmode command to add B-Tree Scanners:
Onmode -C {start <count>|stop <count>|threshold <size>|

duration <seconds>|rangesize <size>|alice <mode>|
compression <low|med|high|default>}

– onmode -C start 1
– onmode -C stop 1

54

Onstat Commands to
Monitor B-Tree Scanners

55

Onstat Command Description

onstat –C Print profile information for the system and scanner threads
onstat –C prof Print profile information for the system and scanner threads
onstat –C hot Print hot list index keys
onstat –C part Print all partitions with index statistics
onstat –C clean Print information about all partitions cleaned and need to be
onstat –C range Print savings in pages processed with range scanning
onstat –C map Print current alice bitmap for all indexes being cleaned
onstat –C alice Print efficiency of alice cleaning method
onstat –C all Print all onstat -C options

Onstat –C
to Monitor B-Tree Scanners

56

Onchecks for Indexes

• Oncheck options to check indexes
– i - table indexes database[:[owner.]table[#index]]
– I - table indexes and rowids in index database[:[owner.]table[#index]]

• Examples:
– oncheck –ci database:table#index_name
– oncheck –cI database:table#index_name

• Best option check all indexes and data
– oncheck –cDI database:table

57

New Oncheck to Show Index
Last Used – oncheck -pT

58

Index Last Used

How to Monitor Index Usage
Compare reads and writes on an index…fewer
reads indicates the index may not be needed
unless it is a constraint
Select a.tabname,

b.idxname,
bufreads,
bufwrites,
case

when bufwrites = 0 then bufreads
when bufreads = 0 then 0
else (bufreads /bufwrites)

end ratio
from systables a, sysindexes b, outer sysmaster:sysptprof p
where a.tabid = b.tabid
and p.tabname = b.idxname
and a.tabid > 99;

59

My old script – does
not handle Indexes
with the same names
in different databases

New - How to Monitor Index
Usage

Compare reads and writes on an index by
partition …fewer reads indicates the index may
not be needed unless it is a constraint
select

t.tabname,
i.indexname,
bufreads,
bufwrites,
case

when bufwrites = 0 then bufreads
when bufreads = 0 then 0
else (bufreads /bufwrites)

end ratio
from systables t, sysfragments i, outer sysmaster:sysptprof p
where t.tabid = i.tabid
and i.fragtype = "I"
and i.partn = p.partnum
and t.tabid > 99; 60

New - How to Monitor Index
Usage

61

New - How to Monitor Index
Usage

62

• GeF
Poor Index Usage

Great Index Usage

Good Index Usage

Questions?

Send follow-up questions to
Lester@advancedatatools.com

63

IIUG World 2019

More information at
http://www.iiug.org

64

Advanced DataTools
Sessions at IIUG World 2019

Mon 9/23 10:15 AM C01. Getting Going With Informix Connection Manager Thomas Beebe

11:30 AM A02. Stories from Database Support Customers Mike Walker

11:30 AM D02. Configuring and using the Informix Warehouse Accelerator Art Kagel

1:30 PM B03. Do Stats Better Art Kagel

Tue 9/24 11:30 AM B07. Do Storage Better Art Kagel

2:45 PM C09. Setting up SSL for Informix Thomas Beebe

Wed 9/25 9:30 AM C11. Migrating your Informix Instance Mike Walker

10:15 AM A12. Exploring the Sysmaster - my new stuff Lester Knutsen

2:45 PM B15. Set up a Raspberry Pi Mike Walker

65

Free Informix Webcasts
from the IBM Informix Champions

Ø SQL Explain - Using the SQL Optimizer Query Explain
Plan, by Lester Knutsen
Ø Thursday, October 31, 2019 at 2:00pm EDT

Ø Update Statistics - Best Practices for Informix DBAs,
by Lester Knutsen
Ø Thursday, November 21, 2019 at 2:00pm EDT

Registration and more information:
https://advancedatatools.com/Informix/NextWebcast.html

66

Informix Training
Updated for Informix 14.10

Ø March 11-14, 2019 - Advanced Informix Performance Tuning

Ø April 22-25, 2019 - Informix for Database Administrators
Ø This course is for new database administrators, programmers, and technical support

personnel who will be setting up, managing, and tuning IBM Informix databases.

Ø October 7-10, 2019 - Informix for Database Administrators
Ø This course is for new database administrators, programmers, and technical support

personnel who will be setting up, managing, and tuning IBM Informix databases.

More information and registration at:
http://www.advancedatatools.com/Training/InformixTraining.html

Attend classes online on the web, or in person at our training center in Virginia. All you need is a web browser to connect to our
WebEx training system and an SSH client (like Putty) to connect to our training lab for hands-on exercises. Each student uses an
8-core Linux server, with 16GB RAM, SSD drives with Informix 12, and several large databases for benchmark exercises.

67

Completed

Completed

Informix Training Servers

68

Each student in
class will have a
server running
Informix 12.10
with:
- 8 CPU Cores
- 16 GB RAM
- 1 SSD Disk
- 1-4 Disks

69

Informix Support and Training from the Informix Champions!
Advanced DataTools is an Advanced Level IBM Informix Data Management Partner, and has been an authorized
Informix partner since 1993. We have a long-term relationship with IBM, we have priority access to high-level support
staff, technical information, and Beta programs. Our team has been working with Informix since its inception, and
includes 8 Senior Informix Database Consultants, 4 IBM Champions, 2 IIUG Director’s Award winners, and an IBM
Gold Consultant. We have Informix specialists Lester Knutsen and Art Kagel available to support your Informix
performance tuning and monitoring requirements!

• Informix Remote DBA Support Monitoring
• Informix Performance Tuning
• Informix Training
• Informix Consulting
• Informix Development

Free Informix Performance Tuning Webcast replays at:
http://advancedatatools.com/Informix/Webcasts.html

Email: info@advancedatatools.com
Web: http://www.advancedatatools.com

Thank You
Advanced DataTools Corporation

For more information:

Lester@advancedatatools.com
http://www.advancedatatools.com

70

