
46 IBM Data ManageMent Issue 1, 2010

INFORMIX DBA/Lester Knutsen

Over the summer, we ran another Fastest
Informix DBA contest based on our very suc-
cessful contest at the IIUG Informix Conference
in April 2009. We enhanced the rules, made the
benchmark process harder, and doubled the
size of the database: a customer billing process
that had lots of unnecessary SQL, missing
indexes, and an ONCONFIG file with some really
bad configuration settings. The billing process
took 40 hours to complete, and we challenged
the participants to make it run faster.

We had more than 70 participants, of whom
8 tuned the process to run in less than 6 minutes.
The fastest made it run in a little under 1 minute.
And to add to the excitement, only a 5-second
difference separated the top three places.

So, congratulations to the new winners!
The results were announced at the IBM
Information On Demand 2009 Global
Conference and updated in a Webcast on
November 16. I made a mistake and missed
the fastest entry, so we decided to give out
two grand prizes. To qualify for the grand
prize, the user must be a DBA employed at
a company using Informix internally, not a
consultant, and not an IBM employee.

� Grand Prize and Fastest Overall Time—
Fastest User DBA: Tatiana Saltykova

� Grand Prize—Fastest User DBA: Eric Rowell
� Fastest Consultant: Warren Donovan
� Fastest International DBA: Malte

Sukopp, Germany
� Runner-up Consultant: Jeff Filippi

� First Runner-up User DBA: Yunyao (Frank) Qu
� Second Runner-up User DBA: Tammy

Frankforter
� Fastest Youngest DBA: Riya Kariath

In this column, I want to highlight what
Tatiana, Eric, and Warren did to take a 40-hour
process and make it run in 1 minute. They all
highlight great examples of what a DBA must do
to produce fast code and fine-tuned databases.

Create the right indexes
The database had four tables, each with a
primary key, but no other indexes. One of the
tricks to database performance is identifying
the right number and placement of indexes.
Missing indexes will slow down reads, but too
many indexes will slow down inserts, updates
on indexed fields, and deletes.

The billing process was missing one key
index. After the bills were created, the customer
table was updated with a new balance, which
required the bills table and customer table to be
joined (see Figure 1). However, while the customer
table had an index on the customer number
field because it was the primary key, the bills
table did not. Without this index, the only way
to find a customer was to do a sequential scan
of more than 600,000 bills. Updating 101,000
customers would require 101,000 x 605,280 bills
or 61,133,280,000 scans of the bills table. Simply
adding this index on the customer number field
in the bills table reduced the processing time
from 40 hours to about 30 minutes.

Lester Knutsen

(lester@advancedatatools.com)

is president of Advanced

DataTools Corporation, an IBM

Informix consulting and training

partner specializing in data

warehouse development,

database design, performance

tuning, and Informix training

and support. He is president

of the Washington, D.C. Area

Informix User Group, a

founding member of IIUG, an

IBM Gold Consultant, and an

IBM Data Champion.

The winners of the latest contest tuned
a process from 40 hours to 1 minute.
Here are their techniques.

Fastest Informix DBA
Contest II: How Did They Do It?

1001-InformixDBA.indd 46 1/19/10 11:18:47 AM

ibm.com/DMMagazIne 47

INFORMIX DBA/Lester Knutsen

It’s also important to add only necessary indexes. Several participants
created additional indexes that did not help the Informix SQL optimizer
and actually slowed down the process.

Optimize the SQL statements
The benchmark process had five SQL statements: three inserts into the
bills table and two update statements—one to calculate the total bill
discount, and one to calculate the new balance. Eric optimized the SQL
to a single statement by using a trigger that updated the customer table
only when a bill was inserted into the bills table (see Figure 2). This
is very efficient code and one of the reasons he performed the task so
fast. Eric eliminated the bill discount UPDATE by adding two SQL CASE

statements to the INSERT statement. Meanwhile, the trigger on the bills
table made the new balance UPDATE statement unnecessary because
the customer balance was updated anytime a bill was inserted.

Eric’s trigger was an especially brilliant approach because it also
eliminated the need for the index on the customer number field in
the bills table previously discussed. He eliminated the time to create
and maintain this index because he did not need it, and he got the job
done faster.

The key to optimizing your SQL is to reduce the number of state-
ments that read through tables. The baseline SQL in this contest read
the customer table three times, one for each of the INSERT statements.
And, it read the customer table and the bills table two more times for
each of the updates. By reducing the SQL to one read and a trigger
that immediately updated the customer table, Eric cut the disk I/O and
database reads and writes to one-fifth of the baseline.

Reduce the disk I/O
Another technique that both Warren and Eric used was to reduce the
number of disk reads. Both used a new feature of Informix: creating
dbspaces with a 16 KB page size instead of the default 2 KB page size.
This meant that the database engine could gather eight times more
data in one read, which benefits most indexes by putting more index
data on a single page. The benefit lies in reducing the number of time-
consuming disk reads to get all the data into memory. Warren and Eric
both set up most of their buffer pools for the 16 KB pages, so this opti-
mized the amount of work that could be done in memory.

More to come at the 2010 IIUG Informix Conference
The contest was a lot of fun to run and monitor, and it is exciting
to see the ingenuity and creativity that all the Informix DBAs put into
it. Congratulations to all the winners, who are listed on our Web site:
www.advancedatatools.com/Informix/index.html.

We will sponsor the next version of this contest, the Fastest Informix
DBA Contest III, at the IIUG Informix Conference in Overland Park,
Kansas, April 25–28. Visit the Advanced DataTools Web site above
for more details or the International Informix User Group Web site at
www.iiug.org/conf. Hope to see you there.

Fastest Informix DBA update customer
 set balance_due = balance_due + (select sum (total_bill)
 from bills where bills.customer_number = customer.customer_number)
where customer_number in (select customer_number from bills);

CREATE TRIGGER ins_bills inser t on bills
 REFERENCING NEW AS n
 FOR EACH ROW
 (UPDATE customer
 SET balance_due = balance_due + n.total_bill
 WHERE customer_number = n.customer_number);

BEGIN WORK;
LOCK TABLE bills IN EXCLUSIVE MODE;

Create bills
--
inser t into bills
 (
 customer_number,
 last_name,
 …
 total_bill
)
select
 customer.customer_number,
 customer.last_name,
 …
 product.product_price,
 CASE
 WHEN customer.star t_date <= "01/01/2009"
 AND customer.balance_due > 50000
 THEN 10
 ELSE 0
 END,
 state.sales_tax,
 CASE
 WHEN customer.star t_date <= "01/01/2009"
 AND customer.balance_due > 50000
 THEN ((product_price - 10) * (1 + state.sales_tax))
 ELSE (product_price * (1 + state.sales_tax))
 END
from customer, state, product
where customer.state = state.state
and customer.product_code[1] = product.product_code[1]
and product.product_number in (1, 2, 4, 7, 9, 10);

Figure 2: Eric Rowell’s Fastest Informix DBA SQL. This SQL takes three inserts
and two update statements and optimizes them into one SQL statement and
one trigger, increasing performance.

Figure 1: SQL to update a customer balance—requires an index on customer_number

Contest II: How Did They Do It?

1001-InformixDBA.indd 47 1/19/10 11:18:48 AM

